EI、Scopus 收录
中文核心期刊

基于动力学模态分解法的绕水翼非定常空化流场演化分析

谢庆墨, 陈亮, 张桂勇, 孙铁志

谢庆墨, 陈亮, 张桂勇, 孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析[J]. 力学学报, 2020, 52(4): 1045-1054. DOI: 10.6052/0459-1879-20-062
引用本文: 谢庆墨, 陈亮, 张桂勇, 孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析[J]. 力学学报, 2020, 52(4): 1045-1054. DOI: 10.6052/0459-1879-20-062
Xie Qingmo, Chen Liang, Zhang Guiyong, Sun Tiezhi. ANALYSIS OF UNSTEADY CAVITATION FLOW OVER HYDROFOIL BASED ON DYNAMIC MODE DECOMPOSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054. DOI: 10.6052/0459-1879-20-062
Citation: Xie Qingmo, Chen Liang, Zhang Guiyong, Sun Tiezhi. ANALYSIS OF UNSTEADY CAVITATION FLOW OVER HYDROFOIL BASED ON DYNAMIC MODE DECOMPOSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054. DOI: 10.6052/0459-1879-20-062
谢庆墨, 陈亮, 张桂勇, 孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析[J]. 力学学报, 2020, 52(4): 1045-1054. CSTR: 32045.14.0459-1879-20-062
引用本文: 谢庆墨, 陈亮, 张桂勇, 孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析[J]. 力学学报, 2020, 52(4): 1045-1054. CSTR: 32045.14.0459-1879-20-062
Xie Qingmo, Chen Liang, Zhang Guiyong, Sun Tiezhi. ANALYSIS OF UNSTEADY CAVITATION FLOW OVER HYDROFOIL BASED ON DYNAMIC MODE DECOMPOSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054. CSTR: 32045.14.0459-1879-20-062
Citation: Xie Qingmo, Chen Liang, Zhang Guiyong, Sun Tiezhi. ANALYSIS OF UNSTEADY CAVITATION FLOW OVER HYDROFOIL BASED ON DYNAMIC MODE DECOMPOSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054. CSTR: 32045.14.0459-1879-20-062

基于动力学模态分解法的绕水翼非定常空化流场演化分析

基金项目: 1)国家自然科学基金(51709042);国家自然科学基金(51639003);中国博士后科学基金(2019T120211);中国博士后科学基金(2018M631791);辽宁省自然科学基金(20180550619);海洋工程国家重点实验室开放基金(1803);中国科协青年人才托举工程项目(2018QNRC001);中央高校基本科研业务费专项(DUT20TD108);辽宁省"兴辽英才计划"(XLYC1908027)
详细信息
    通讯作者:

    孙铁志

  • 中图分类号: O351

ANALYSIS OF UNSTEADY CAVITATION FLOW OVER HYDROFOIL BASED ON DYNAMIC MODE DECOMPOSITION

  • 摘要: 空化是船舶和水下航行体推进器中经常发生的一种特殊流动现象,它具有强烈的非定常性,空化的发生往往会影响推进器的水动力性能和效率. 为探究绕水翼非定常空化流场结构,本文基于 Schnerr-Sauer 空化模型和 SST $k$-$\omega $ 湍流模型,开展绕二维水翼非定常空化流动数值预报与流场结构分析. 通过将数值预报的空泡形态演变和压力数据与试验结果对比,验证了建立的数值方法的有效性. 并基于动力学模态分解方法对空化流场的速度场进行模态分解,分析了各个模态的流场特征. 结果表明,第一阶模态对应频率为 0,代表平均流场;第二阶模态对应频率约为空泡脱落频率,揭示了空泡在水翼前缘周期性地生长与脱落,第三阶模态对应频率约为第二阶模态的 2 倍,揭示了两个大尺度旋涡在水翼后方存在融合行为. 第四阶模态对应频率约为第二阶模态的 3 倍,具有更高的频率,表征流场中存在一些小尺度旋涡的融合行为. 最后对不同空化数下的空化流场进行了模态分解分析,发现脱落空泡的旋涡结构随着空化数的减小而增大,第二阶模态频率随着空化数的减小而减小.
    Abstract: Cavitation is a special flow phenomenon with strong unsteadiness that often occurs in propeller of ships and underwater vehicles. The occurrence of cavitation often affects the hydrodynamic performance and efficiency of propulsion systems. In order to study the unsteady cavitation flow field structure around hydrofoil, numerical prediction and flow field structure analysis of unsteady cavitation flow around two-dimensional hydrofoil are investigated by using Schnerr-Sauer cavitation model and SST $k$-$\omega $ turbulence model. The validity of the established numerical method is verified by comparing the numerical prediction of cavitation evolution and pressure data with experimental results. The velocity field of the cavitation flow field is analyzed by using Dynamic Mode Decomposition (DMD). The results show that the first-order mode is 0Hz, which represents the average flow field. The second-order mode is about the frequency of cavitation shedding, which reveals the cavities grow and shed periodically at the leading edge of the hydrofoil. The third-order mode has a corresponding frequency about 2 times of the second order mode, which reveals that the fusion behavior of two large-scale vortices behind the hydrofoil. The fourth-order mode has a corresponding frequency about 3 times of the second order mode, which characterizes the fusion behavior of some small-scale eddies in the flow field. Finally, the modal decomposition analysis of the cavitation flow field under different cavitation numbers was carried out. It was found that the vortex structure of the shedding cavities increased with the decrease of the cavitation number, and the second-order mode frequency decreases with decreasing cavitation number.
  • [1] Brennen. Cavitation and Bubble Dynamics: ed. New York: Oxford University Press, 1995
    [2] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展. 力学进展, 2018,48:259-298
    [2] ( Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process. Advances in Mechanics, 2018,48:259-298 (in Chinese))
    [3] 赵宇, 王国玉, 黄彪 等. 水翼叶顶间隙旋涡空化流动特性研究. 船舶力学, 2015,19(11):1304-1311
    [3] ( Zhao Yu, Wang Guoyu, Huang Biao, et al. Investigation of vortical cavitating flows in tip leakage region of a hydrofoil. Journal of Ship Mechanics, 2015,19(11):1304-1311 (in Chinese))
    [4] 曹彦涛, 彭晓星, 张国平 等. 绕三维扭曲水翼云空化形成及演化的试验研究. 船舶力学, 2014,18(5):485-491
    [4] ( Cao Yantao, Peng Xiaoxing, Zhang Guoping, et al. Experimental study on the generation and development of cloud cavitation around a three dimensional twisted hydrofoil. Journal of Ship Mechanics, 2014,18(5):485-491 (in Chinese))
    [5] Sun TZ, Wei YJ, Zou L, et al. Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid. International Journal of Multiphase Flow, 2019,111:82-100
    [6] Wu Q, Wang Y, Wang G. Experimental investigation of cavitating flow-induced vibration of hydrofoils. Ocean Engineering, 2017,144:50-60
    [7] 季斌, 程怀玉, 黄彪 等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019,49:428-479
    [7] ( Ji Bin, Cheng Huaiyu, Huang Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019,49:428-479 (in Chinese))
    [8] 唐庆宏, 于安, 郑源 等. 热力学效应对水翼云空化非定常特性影响研究. http://kns.cnki.net/kcms/detail/32.1814.TH.20191217.1456.004.html" target="_blank"> http://kns.cnki.net/kcms/detail/32.1814.TH.20191217.1456.004.html. 1-12, 2020-02-25
    [8] ( Tang Qinghong, Yu An, Zheng Yuan, et al. Investigation of thermodynamic effects on cloud cavitation dynamics around 3-D hydrofoil. http://kns.cnki.net/kcms/detail/32.1814.TH.20191217.1456.004.html" target="_blank"> http://kns.cnki.net/kcms/detail/32.1814.TH.20191217.1456.004.html. 1-12, 2020-02-25 (in Chinese))
    [9] 王巍, 唐滔, 卢盛鹏 等. 主动射流控制水翼空化的数值模拟与分析. 力学学报, 2019,51(6):1752-1760
    [9] ( Wang Wei, Tang Tao, Lu Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil cavitation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1752-1760 (in Chinese))
    [10] 陈铠杰, 万德成. 基于黏性修正 SST $k$-$\omega $ 模型的水翼空化流数值模拟计算. 水动力学研究与进展, 2019,34(2):224-231
    [10] ( Chen Kaijie, Wan Decheng. Numerical simulation on cavitation flow of hydrofoil with viscosity-modified SST $k$-$\omega $ turbulence model. Chinese Journal of Hydrodynamics, 2019,34(2):224-231 (in Chinese))
    [11] Knapp RT, Dailey JW, Hammitt FG. Cavitation. McGraw-Hill Book Company. Catalog Card Number 77-96428, 1970
    [12] Leroux J, Coutier-Delgosha O, Astolfi JA. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Physics of Fluids, 2005,17(5):1-20
    [13] 王雅赟, 王本龙, 刘桦. 二维水翼片空泡脱落及云空化数值模拟. 水动力学研究与进展 A 辑, 2014,29(2):175-182
    [13] ( Wang Yayun, Wang Benlong, Liu Hua. Numerical simulation of sheet cavity shedding and cloud cavitation on a 2D hydrofoil. Chinese Journal of Hydrodynamics, 2014,29(2):175-182 (in Chinese))
    [14] Sun T, Wei Y, Zou L, et al. Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid. International Journal of Multiphase Flow, 2019,111:82-100
    [15] 王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究. 力学学报, 2018,50(5):990-1002
    [15] ( Wang Changchang, Wang Guoyu, Huang Biao. Numerical simulation of shock wave dynamics in transient turbulent cavitating flows. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):990-1002 (in Chinese))
    [16] 孙铁志, 魏英杰, 王聪 等. 空化模型在低温流体空化流动三维计算中的应用与评价. 船舶力学, 2018,22(1):22-30
    [16] ( Sun Tiezhi, Wei Yingjie, Wang Cong, et al. Evaluation of cavitation model in three-dimensional computations of cryogenics liquid cavitating flows. Journal of Ship Mechanics, 2018,22(1):22-30 (in Chinese))
    [17] Guo Q, Huang X, Qiu B. Numerical investigation of the blade tip leakage vortex cavitation in a water jet pump. Ocean Engineering, 2019,187:106170
    [18] 彭凯, 陈闰路, 邵雪明 等. 轴流泵顶隙涡的数值模拟研究. 水动力学研究与进展, 2018,33(6):685-688
    [18] ( Peng Kai, Chen Runlu, Shao Xueming, et al. Numerical investigation of tip leakage vortex in axial-flow pump. Chinese Journal of Hydrodynamics, 2018,33(6):685-688 (in Chinese))
    [19] Cheng H, Long X, Ji B, et al. LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow. Ocean Engineering, 2019,186:106-115
    [20] Ji B, Luo XW, Arndt REA, et al. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. International Journal of Multiphase Flow, 2015,68(68):121-134
    [21] 高远, 黄彪, 吴钦 等. 绕水翼空化流动及振动特性的实验研究. 力学学报, 2015,47(6):1009-1016
    [21] ( Gao Yuan, Huang Biao, Wu Qin, et al. Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(6):1009-1016 (in Chinese))
    [22] 王巍, 唐滔, 卢盛鹏 等. 主动射流控制水翼空化的数值模拟与分析. 力学学报, 2019,51(6):1752-1760
    [22] ( Wang Wei, Tang Tao, Lu Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil cavitation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1752-1760 (in Chinese))
    [23] Cheng H, Long X, Ji B, et al. LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow. Ocean Engineering, 2019,186:106115
    [24] Brandao FL, Bhatt M, Mahesh K. Numerical study of cavitation regimes in flow over a circular cylinder. Journal of Fluid Mechanics, 2020,885
    [25] Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010,656:5-28
    [26] Rowley CW, Mezi I, Bagheri S, et al. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 2009,641:115-127
    [27] 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用. 空气动力学学报, 2018,36(2):163-179
    [27] ( Kou Jiaqing, Zhang Weiwei. Dynamic mode decomposition and its applications in fluid dynamics. Acta Aerodynamica Sinica, 2018,36(2):163-179 (in Chinese))
    [28] 韩亚东, 谭磊. 文丘里管空化流动的试验研究及动力学模态分解. 机械工程学报, 2019,55(18):173-179
    [28] ( Han Yadong, Tan Lei. Experiment and dynamic mode decomposition of cavitating flow in venturi. Journal of Mechanical Engineering, 2019,55(18):173-179 (in Chinese))
    [29] Liu M, Tan L, Cao S. Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil. Renewable Energy, 2019,139:214-227
    [30] Schnerr GH, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics// Fourth International Conference on Multiphase Flow. ICMF New Orleans, 2001,1
    [31] Menter FR, Rumsey CL. Assessment of two-equation turbulence models for transonic flows. Colorado Springs, CO, United States: American Institute of Aeronautics and Astronautics Inc, AIAA, 1994
    [32] Huang NE, Wu M, Qu W, et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry, 2003,19(3):245-268
  • 期刊类型引用(11)

    1. 王子豪,孙铁志,张桂勇. 非定常空化涡旋结构演化及压力波机制的研究. 振动与冲击. 2024(02): 22-31+145 . 百度学术
    2. 刘学,张志国,徐洪洲,边金尧. 潜航器垂直出水过程非定常空化流场演化分析. 强度与环境. 2024(03): 18-27 . 百度学术
    3. 陈德开,唐文献,陆亚琳,曹秀清,周磊. 基于动力学模态分解的空化水射流非定常流场演化分析. 机床与液压. 2024(18): 162-170 . 百度学术
    4. 张伟,聂旭涛,欧李苇,夏智勋,陈磊. 基于频率加权的后缘拍动变体机翼流场模态分解. 航空学报. 2024(18): 68-83 . 百度学术
    5. 王健. 低雷诺数下两类柱体绕流的动力学模态分解. 建筑施工. 2023(10): 2142-2148 . 百度学术
    6. 陈家成,陈泰然,梁文栋,谭树林,耿昊. 收缩扩张管内液氮空化流动演化过程试验研究. 力学学报. 2022(05): 1242-1256 . 本站查看
    7. 田北晨,李林敏,陈杰,黄彪,曹军伟. 绕水翼空化流动多尺度数值研究. 力学学报. 2022(06): 1557-1571 . 本站查看
    8. 洪锋,薛环铖,张帆,胡涛. 不同亚格子模型在水翼云空化数值计算中的适用性分析. 排灌机械工程学报. 2022(09): 915-920 . 百度学术
    9. 程怀玉,季斌,龙新平,槐文信. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报. 2021(05): 1268-1287 . 本站查看
    10. 张子欣,张继发. DMD方法对流场特征捕捉能力的研究. 飞机设计. 2021(02): 13-16+21 . 百度学术
    11. 王恋舟,吴铁成,郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报. 2021(08): 2267-2278 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  1770
  • HTML全文浏览量:  307
  • PDF下载量:  171
  • 被引次数: 20
出版历程
  • 收稿日期:  2020-03-02
  • 刊出日期:  2020-08-09

目录

    /

    返回文章
    返回