EI、Scopus 收录
中文核心期刊

基于巴西盘试验的海冰拉伸强度研究

陈晓东, 崔海鑫, 王安良, 季顺迎

陈晓东, 崔海鑫, 王安良, 季顺迎. 基于巴西盘试验的海冰拉伸强度研究[J]. 力学学报, 2020, 52(3): 625-634. DOI: 10.6052/0459-1879-20-036
引用本文: 陈晓东, 崔海鑫, 王安良, 季顺迎. 基于巴西盘试验的海冰拉伸强度研究[J]. 力学学报, 2020, 52(3): 625-634. DOI: 10.6052/0459-1879-20-036
Chen Xiaodong, Cui Haixin, Wang Anliang, Ji Shunying. EXPERIMENTAL STUDY ON SEA ICE TENSILE STRENGTH BASED ON BRAZILIAN TESTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625-634. DOI: 10.6052/0459-1879-20-036
Citation: Chen Xiaodong, Cui Haixin, Wang Anliang, Ji Shunying. EXPERIMENTAL STUDY ON SEA ICE TENSILE STRENGTH BASED ON BRAZILIAN TESTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625-634. DOI: 10.6052/0459-1879-20-036
陈晓东, 崔海鑫, 王安良, 季顺迎. 基于巴西盘试验的海冰拉伸强度研究[J]. 力学学报, 2020, 52(3): 625-634. CSTR: 32045.14.0459-1879-20-036
引用本文: 陈晓东, 崔海鑫, 王安良, 季顺迎. 基于巴西盘试验的海冰拉伸强度研究[J]. 力学学报, 2020, 52(3): 625-634. CSTR: 32045.14.0459-1879-20-036
Chen Xiaodong, Cui Haixin, Wang Anliang, Ji Shunying. EXPERIMENTAL STUDY ON SEA ICE TENSILE STRENGTH BASED ON BRAZILIAN TESTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625-634. CSTR: 32045.14.0459-1879-20-036
Citation: Chen Xiaodong, Cui Haixin, Wang Anliang, Ji Shunying. EXPERIMENTAL STUDY ON SEA ICE TENSILE STRENGTH BASED ON BRAZILIAN TESTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625-634. CSTR: 32045.14.0459-1879-20-036

基于巴西盘试验的海冰拉伸强度研究

基金项目: 1)国家重点研发计划重点专项(2018YFA0605902, 2016YFC1401505)和国家自然科学基金(51639004, 41576179)资助项目
详细信息
    通讯作者:

    2)季顺迎, 教授, 主要从事寒区海洋工程研究. E-mail: jisy@dlut.edu.cn.

  • 中图分类号: O346.1

EXPERIMENTAL STUDY ON SEA ICE TENSILE STRENGTH BASED ON BRAZILIAN TESTS

  • 摘要: 海冰拉伸强度是其基本力学性能之一, 同时也是冰区船舶与海洋工程结构设计所需的重要参数. 对于脆性材料的拉伸强度测试, 巴西盘劈裂试验相比单轴拉伸试验在试样制备与加载上具有明显的优势. 为研究海冰的拉伸强度特征, 对渤海辽东湾沿岸的粒状冰开展了系统的巴西盘劈裂试验研究. 在加载过程中与试样破坏后, 分别对加载横梁的位移与加载力以及试样最终破坏模式进行了记录. 同时, 对试样的冰晶结构、盐度、温度以及密度进行了测量. 通过改变加载速率、试样厚度与试样温度以研究不同参数对试验结果的影响. 针对传统试验中试样的刚体假设, 考虑了试样变形对应力状态的影响并将其引入了理论模型. 试验过程中所有海冰试样均以劈裂模式破坏. 试验结果表明, 加载速率与试样厚度对拉伸强度的影响并不显著, 但孔隙率的影响较为明显. 当孔隙率由75‰降低至10‰时,拉伸强度由1.0 MPa升高至2.8 MPa. 与单轴拉伸试验所测得数据对比, 巴西盘劈裂试验所得到的拉伸强度随孔隙率的变化趋势相一致. 但该方法所得到的粒状冰拉伸强度要高于预期结果. 试验表明巴西盘劈裂试验中海冰试样的破坏模式与试验结果均较为合理, 可成为海冰拉伸强度的有效测试方法.
    Abstract: The tensile strength of sea ice is one of the fundamental mechanical properties as well as a key parameter for the design of ships and offshore structures in ice-infected waters. For the determination of the tensile strength of brittle materials, the Brazilian test has advantages on sample preparation and loading procedure compared with the traditional method of uniaxial tension tests. To study the tensile strength of sea ice, the Brazilian tests were carried out on the sea ice with granular structure, which was collected in the Liaodong Bay of Bohai Sea. The load and loading plate displacement were recorded while the final failure pattern was photographed. Besides, the ice texture, salinity, temperature and density were also measured. The tests were performed on the ice samples with various thicknesses, temperatures and loading speeds. To calculate the tensile strength with high precision, the ice deformation is considered to improve the conventional formula. In all the experiments the ice samples failed in splitting manner. It means that the ice sample failed by reaching its tensile strength and the method works as initial expectation. The results show that the tensile strength has weak dependency on the loading speed and sample thickness but strong dependency on the total porosity. The tensile strength increased from 1.0 MPa to 2.8 MPa when total porosity decreased from 75‰ to 10‰. The results were compared with the tensile strength from uniaxial tension tests. It shows that both results have a similar trend where the total porosity and the tensile strength are in a negative relationship. However, the values of tensile strength from granular ice samples were higher than expectation. This study has identified that all the samples failed in expected pattern and the experiments provided reasonable results. It is a potential alternative for the investigation of tensile strength of sea ice.
  • Timco G, Weeks W.A review of the engineering properties of sea ice. Cold Regions Science and Technology, 2010, 60(2): 107-129
    Aly M, Taylor R, Bailey E, et al.Scale Effect in Ice Flexural Strength. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(5): 051501-051512
    Long X, Ji S, Wang Y.Validation of microparameters in discrete element modeling of sea ice failure process. Particulate Science and Technology, 2019, 37(5): 550-559
    Lu W, Lubbad R, Løset S.Out-of-plane failure of an ice floe: Radial-crack-initiation-controlled fracture. Cold Regions Science and Technology, 2015, 119: 183-203
    Lu W, Lubbad R, Løset S, et al.Fracture of an ice floe: Local out-of-plane flexural failures versus global in-plane splitting failure. Cold Regions Science and Technology, 2016, 123: 1-13
    Cole DM, Gould LD, Burch WB.A system for mounting end caps on ice specimens. Journal of Glaciology, 1985, 31(109): 362-365
    Lee RW.A procedure for testing cored ice under uniaxial tension. Journal of Glaciology, 1986, 32(112): 540-541
    Richter-Menge JA, Claffey KJ, Walsh MR.End-capping procedure for cored ice samples used in tension tests. Journal of Glaciology, 1993, 39(133): 698-700
    Mohamed AMA, Farzaneh M.An experimental study on the tensile properties of atmospheric ice. Cold Regions Science and Technology, 2011, 68(3): 91-98
    Wang Q, Jia X, Kou S, et al.The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 245-253
    Karulina M, Marchenko A, Karulin E, et al.Full-scale flexural strength of sea ice and freshwater ice in Spitsbergen Fjords and North-West Barents Sea. Applied Ocean Research, 2019, 90(101853): 1-15
    杨志鹏, 何柏, 谢凌志等. 基于巴西劈裂试验的页岩强度与破坏模式研究. 岩土力学, 2015, 36(12): 3447-3455, 3464
    (Yang Zhipeng, He Bai, Xie Lingzhi, et al.Strength and failure modes of shale based on Brazilian test. Rock and Soil Mechanics, 2015, 36(12): 3447-3455, 3464 (in Chinese))
    陈晓东, 王安良, 季顺迎. 海冰在单轴压缩下的韧-脆转化机理及破坏模式. 中国科学: 物理学力学天文学, 2018, 48(12): 24-35
    (Chen Xiaodong, Wang Anliang, Ji Shunying. Influence of water level on ice load on upward-downward conical structure based on dem analysis. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(12): 24-35 (in Chinese))
    季顺迎, 王安良, 刘宏亮. 渤海海冰侧限压缩强度的影响因素分析. 海洋通报, 2014, 33(4): 371-376
    (Ji Shunying, Wang Anliang, Liu Hongliang.Analysis of influence factors on the confined compression strength of sea ice in the Bohai Sea. Marine Science Bulletin, 2014, 33(4): 371-376 (in Chinese))
    赵程, 于志敏, 王文东等. 基于单轴压缩的岩体破坏机制细观试验研究. 岩石力学与工程学报, 2016, 35(12): 2490-2498
    (Zhao Cheng, Yu Zhimin, Wang Wendong, et al.Meso-experimental study of failure mechanism of rock based on uniaxial compression test. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2490-2498 (in Chinese))
    王海军, 张九丹, 任然等. 基于3D-ILC含不同角度内裂纹圆盘断裂特性研究. 岩土工程学报, 2019, 41(9): 1636-1644
    (Wang Haijun, Zhang Jiudan, Ren Ran, et al.Fracture characteristics of Brazilian disc with fully internal cracks based on 3D-ILC. Chinese Journal of Rock Mechanics and Engineering, 2019, 41(9): 1636-1644 (in Chinese))
    方新宇, 许金余, 刘石等. 岩石动态劈裂试验的最优试件尺寸分析. 振动与冲击, 2014, 33(21): 73-79
    (Fang Xinyu, Xu Jinyu, Liu Shi, et al.Fracture characteristics of Brazilian disc with fully internal cracks based on 3D-ILC. Journal of Vibration and Shock, 2014, 33(21): 73-79 (in Chinese))
    Rocco C, Guinea GV, Planas J, et al.Size effect and boundary conditions in the brazilian test: Theoretical analysis. Materials and Structures, 1999, 32(6): 437-444
    Yu J, Shang X, Wu P.Influence of pressure distribution and friction on determining mechanical properties in the Brazilian test: Theory and experiment. International Journal of Solids and Structures, 2019, 161: 11-22
    苏承东, 付义胜. 红砂岩三轴压缩变形与强度特征的试验研究. 岩石力学与工程学报, 2014, 33(S1): 3164-3169
    (Su Chengdong, Fu Yisheng.Experimental study of triaxial compression deformation and strength characteristics of red sandstone. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3164-3169 (in Chinese))
    Liu C, Deng H, Zhao H, et al.Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test. Cold Regions Science and Technology, 2018, 155: 327-332
    Ming F, Li D, Zhang M, et al.A novel method for estimating the elastic modulus of frozen soil. Cold Regions Science and Technology, 2017, 141: 1-7
    Zhou G, Hu K, Zhao X, et al.Laboratory investigation on tensile strength characteristics of warm frozen soils. Cold Regions Science and Technology, 2015, 113: 81-90
    Radi E, Dragoni E, Spaggiari A. Adhesively bonded disk under compressive diametrical load. International Journal of Solids and Structures, 2018, 152-153: 51-65
    Kovacs A, Kalafut J. Brazil tensile strength tests on sea ice-a data report. Cold Regions Research and Engineering Lab Hanover NH.1977, New Hampshire, USA
    Serati M, Alehossein H, Williams DJ.Estimating the tensile strength of super hard brittle materials using truncated spheroidal specimens. Journal of the Mechanics and Physics of Solids, 2015, 78: 123-140
    Yu J, Shang X, Wu P.Influence of pressure distribution and friction on determining mechanical properties in the Brazilian test: Theory and experiment. International Journal of Solids and Structures, 2019, 161: 11-22
    Yu D, Li ZK, Li ZJ, et al.The experiment of fracture mechanics characteristics of yellow river ice. Cold Regions Science and Technology, 2019, 168: 102896
    王启智, 李炼, 吴礼舟等. 改进巴西试验:从平台巴西圆盘到切口巴西圆盘. 力学学报, 2017, 49(4): 793-801
    (Wang Qizhi, Li Lian, Wu Lizhou, et al.Meso-experimental study of failure mechanism of rock based on uniaxial compression test. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 793-801 (in Chinese))
    黄耀光, 王连国, 陈家瑞等.平台巴西劈裂试验确定岩石抗拉强度的理论分析. 岩土力学, 2015, 36(3): 739-748
    (Huang Yaoguang, Wang Lianguo, Chen Jiarui, et al.Theoretical analysis of flattened Brazilian splitting test for determining tensile strength of rocks. Chinese Journal of Theoretical and Applied Mechanics, 2015, 36(3): 739-748 (in Chinese))
    Pustogvar A, Kulyakhtin A.Sea ice density measurements. Methods and uncertainties. Cold Regions Science and Technology, 2016, 131: 46-52
    Cole GFN, Weeks WF.Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 1983, 29(102): 306-316
    Kuehn GA, Lee RW, Nixon WA, et al.The structure and tensile behavior of first-year sea ice and laboratory-grown saline ice. Journal of Offshore Mechanics and Arctic Engineering, 1990, 112(4): 357-363
    Bonath V, Petrich C, Fransson L, et al.2013. Laboratory testing of compressive and tensile strength on level ice and ridged ice from Svalbard region//Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions, 2013, Espoo, Finland
    季顺迎,王安良,苏洁等.环渤海海冰弯曲强度的试验测试及特性分析. 水科学进展, 2011, 22(2): 266-272
    (Ji Shunying, Wang Anliang, Su Jie, et al.Experimental studies and characteristics analysis of sea ice flexural strength around the Bohai Sea. Advances in Water Science, 2011, 22(2): 266-272 (in Chinese))
    王安良,许宁,毕祥军等.卤水体积和应力速率影响下海冰强度的统一表征. 海洋学报, 2016, 38(9): 126-133
    (Wang Anliang, Xu Ning, Bi Xiangjun, et al.Unified representation of sea ice strengths under influences of brine volume and stress rate. Acta Oceanologica Sinica, 2016, 38(9): 126-133 (in Chinese))
    刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰荷载的高性能扩展多面体离散元方法. 力学学报, 2019, 51(6): 1720-1739
    (Liu Lu, Yin Zhenyu, Ji Shunying.High-performance dilated polyhedral based dem for ice loads on ship and offshore platform structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739 (in Chinese))
    龙雪, 刘社文, 季顺迎. 水位变化对正倒锥体冰载荷影响的离散元分析. 力学学报, 2019, 51(1): 74-84
    (Long Xue, Liu Shewen, Ji Shunying.Influence of water level on ice load on upward-downward conical structure based on dem analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 74-84 (in Chinese))
计量
  • 文章访问数:  1621
  • HTML全文浏览量:  313
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-12
  • 刊出日期:  2020-06-09

目录

    /

    返回文章
    返回