EI、Scopus 收录
中文核心期刊

拉-扭复合加载下不锈钢的弹塑性本构关系——Ⅱ.理论

AN ELASTO PLASTIC CONSTITUTIVE EQUATIONS FOR THE STAINLESS STEEL UNDER COMBINED AXIAL AND TORSIONAL LOADS II. THEORY

  • 摘要: 提出应力是塑性应变空间内蕴几何学参数的泛函.一般情况下,塑性应变空间是非欧几何空间,而其度量张量是塑性应变和其历史的函数,但在初始各向同性和不可压的情况下可取成欧氏空间.本文在Ilyushin理论,和Valanis理论的基础上,提出在拉-扭复合加载下的εp1-εp3空间中新的积分型弹塑性本构关系,所建理论预测的结果和实验[1]相当一致,表明理论是合理的

     

    Abstract: This paper proposed that stress may be expressed as a functional of the intrinsic geometry parameters of plastic strain space. In general, the plastic strain space is not an Euclidean geometric space and its measure tensor is a function of not only coordinates (plastic strain) but also plastic strain history. However, it can be taken as an Euclidean one for the case when the material is initial isotropic and plastically incompressible. Based on the theories of Ilyushin and Valanis, a new integral elasto pl...

     

/

返回文章
返回