EI、Scopus 收录
中文核心期刊

弹塑性有限变形的拟流动理论

QUASI-FLOW THEORY OF ELASTIC PLASTIC FINITE DEFORMATION

  • 摘要: 本文提出一种弹塑性有限变形的拟流动理论。该理论从正交性法则出发,通过引入“拟弹性模量”和模量衰减函数并改进应变率的弹塑性分解,实现了由有限变形Prandtl-Reuss流动理论(J2F)向基于非正交法则的率形式形变理论(J2D)的合理的光滑过渡;并适用于初始及后继各向异性变形分析。在特殊条件下,可退化为J2F、J2D理论以及由任意各向异性屈服函数描述的流动理论。将该理论用于韧性金属平面应力/应变拉伸失稳与变形局部化的有限元模拟,并与理论分析及实验结果相比较,表明了本文理论的正确性。

     

    Abstract: A Quasi-Flow Theory of elastic plastic finite deformation is proposed. Thetheory originates from the classical normality law. By introducing a weak function withrespect to elastic modulus into the constitutive equations and by improving the commondecomposition scheme of elastic and plaistic strain rates, the Quasi-Flow Theory achieves asmooth and continuous transition from the fiuite deformation Prandtl-Reuss equation (J2F)based on the norrnality law to the rate form of the hypoelastic J2 deformation theory...

     

/

返回文章
返回