EI、Scopus 收录
中文核心期刊

基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测

史荣豪, 肖攀, 杨荣

史荣豪, 肖攀, 杨荣. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测[J]. 力学学报, 2020, 52(2): 369-378. DOI: 10.6052/0459-1879-19-369
引用本文: 史荣豪, 肖攀, 杨荣. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测[J]. 力学学报, 2020, 52(2): 369-378. DOI: 10.6052/0459-1879-19-369
Shi Ronghao, Xiao Pan, Yang Rong. PREDICTION OF SHEAR TRANSFORMATION ZONES IN METALLIC GLASSES BASED ON LAPLACIAN OF ATOMIC VOLUME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 369-378. DOI: 10.6052/0459-1879-19-369
Citation: Shi Ronghao, Xiao Pan, Yang Rong. PREDICTION OF SHEAR TRANSFORMATION ZONES IN METALLIC GLASSES BASED ON LAPLACIAN OF ATOMIC VOLUME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 369-378. DOI: 10.6052/0459-1879-19-369
史荣豪, 肖攀, 杨荣. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测[J]. 力学学报, 2020, 52(2): 369-378. CSTR: 32045.14.0459-1879-19-369
引用本文: 史荣豪, 肖攀, 杨荣. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测[J]. 力学学报, 2020, 52(2): 369-378. CSTR: 32045.14.0459-1879-19-369
Shi Ronghao, Xiao Pan, Yang Rong. PREDICTION OF SHEAR TRANSFORMATION ZONES IN METALLIC GLASSES BASED ON LAPLACIAN OF ATOMIC VOLUME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 369-378. CSTR: 32045.14.0459-1879-19-369
Citation: Shi Ronghao, Xiao Pan, Yang Rong. PREDICTION OF SHEAR TRANSFORMATION ZONES IN METALLIC GLASSES BASED ON LAPLACIAN OF ATOMIC VOLUME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 369-378. CSTR: 32045.14.0459-1879-19-369

基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测

基金项目: 1)国家自然科学基金(11790292);国家自然科学基金(11672298);国家自然科学基金(11432014);中国科学院战略性先导科技专项(B类)(XDB22040501)
详细信息
    通讯作者:

    肖攀

  • 中图分类号: O344.4

PREDICTION OF SHEAR TRANSFORMATION ZONES IN METALLIC GLASSES BASED ON LAPLACIAN OF ATOMIC VOLUME

  • 摘要: 剪切转变区(shear transformation zone, STZ)作为金属玻璃塑性事件的一个基本特征单元, 已被研究者们逐渐接受,但STZ产生的机制和来源仍具争议. 本文采用分子模拟方法对 Cu$_{64}$Zr$_{36}$金属玻璃在受简单剪切加载时的变形行为展开了研究. 结果表明,体系的初始构型与加载后STZ的产生是相关的. 虽然原子体积场及其梯度可以用来有效表征金属玻璃中局部原子构型的非均匀性, 但它们与STZ产生的区域没有直接明显的对应关系. 基于此, 提出一个新的局域结构参数 $\xi $ 来用于金属玻璃中STZ产生区域的预测,它由两部分构成: 原子体积场的拉普拉斯算子和体积场梯度分量的绝对差值. 原子体积场的拉普拉斯算子为负且绝对值较大时, 体积场梯度向量呈现向内指的分布特征, 代表体系中的局域软区; 而体积场梯度分量的绝对差值则用于遴选体积场梯度不同的分布模式. 进一步地,建立了该结构参数与非仿射位移和剪切局部化三者关系, 发现特定的体积场梯度向量分布模式, 将导致局部剪切增强的非仿射位移场, 从而更容易诱发STZ的形成. 相关性分析表明,该参数与STZ区域平均相关性高于78%, 因此, 该参数能有效用于金属玻璃剪切转变区的预测,且运用拉普拉斯算子的思想有望应用于金属玻璃力学行为的理论分析.
    Abstract: Shear transformation zone (STZ), as a basic characteristic unit of plastic events in metallic glasses (MGs), has been widely accepted by researchers, but the source of its origin and activation mechanism are still controversial. Deformation behaviours of Cu$_{64}$Zr$_{36}$ MGs under simple shear loadings are investigated using molecular simulation method in this paper. The results indicate that the activation locations of STZ are related to the initial configuration of MGs. Though the field of atomic volume and its gradient are a direct representation of the local atomic structural heterogeneity of MGs, they lack an obvious correlation to the regions of STZ activation. A new local structural parameter $\xi $ is proposed in this paper based on the initial configuration of MG to predict the potential regions of STZ. $\xi $ is the product of two factors: the Laplacian of atomic volume field (AVF) and the absolute difference between components of the gradient of AVF. Vectors of the AVF gradient present a distribution pattern of pointing inside if the Laplacian of AVF is negatively large, representing the localized soft regions in MGs. The absolute difference of AVF gradient components is used to select different patterns of the AVF gradient distribution. Furthermore, the relationship among structural parameter $\xi $, nonaffine displacement and shear localization is established, revealing that only certain patterns of AVF gradient distribution would lead to nonaffine displacements field strengthening shear localization, which is more likely to result in activation of STZs. The correlation analysis shows that the averaged spatial correlation index of $\xi $ and STZ is larger than 78%, so $\xi $ can be used as an effective parameter for predicting the activation regions of STZs in MGs. Moreover, the ideology of using Laplacian of local AVF in predicting potential STZ regions in MGs would bridge the analysis between atomic simulations of MGs, the mechanism of STZ activations and the traditional mechanical theory.
  • [1] 孙奕韬, 王超, 吕玉苗 等. 非晶材料与物理近期研究进展. 物理学报, 2018,67:126101
    [1] ( Sun Yitao, Wang Chao, Lü Yumiao , et al. Recent progress of the glassy materials and physics. Acta Physica Sinica, 2018,67:126101 (in Chinese))
    [2] Wang Z, Wang WH . Flow units as dynamic defects in metallic glassy materials. National Science Review, 2019,6:304-323
    [3] Wang N, Ding J, Yan F , et al. Spatial correlation of elastic heterogeneity tunes the deformation behavior of metallic glasses. NPJ Computational Materials, 2018,4:19
    [4] Zhu F, Song S, Reddy KM , et al. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. Nature Communications, 2018,9:3965
    [5] Qiao JC, Wang Q, Pelletier JM , et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019,104:250-329
    [6] Taylor GI . The Mechanism of plastic deformation of crystals. Part I. Theoretical. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934,145:362-387
    [7] Bernal JD . A geometrical approach to the structure of liquids. Nature, 1959,183:141-147
    [8] Spaepen F . A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977,25:407-415
    [9] 汪卫华 . 非晶态物质的本质和特性. 物理进展, 2013,33:177-351
    [9] ( Wang Weihua . The nature and properties of amorphous matter. Progress in Physics, 2013,33:177-351 (in Chinese))
    [10] Argon AS . Plastic deformation in metallic glasses. Acta Metallurgica, 1979,27:47-58
    [11] Schall P, Weitz DA, Spaepen F . Structural rearrangements that govern flow in colloidal glasses. Science, 2007,318:1895-1899
    [12] Sun BA, Wang WH . The fracture of bulk metallic glasses. Progress in Materials Science, 2015,74:211-307
    [13] Maloney CE, Lema?tre A . Amorphous systems in athermal, quasistatic shear. Physical Review E, 2006,74:016118
    [14] Hu YC, Guan PF, Wang Q , et al. Pressure effects on structure and dynamics of metallic glass-forming liquid. The Journal of Chemical Physics, 2017,146:024507
    [15] Wu YC, Wang B, Hu YC , et al. The critical strain - A crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass. Scripta Materialia, 2017,134:75-79
    [16] Tian ZL, Wang YJ, Chen Y , et al. Strain gradient drives shear banding in metallic glasses. Physical Review B, 2017,96:094103
    [17] Wei D, Yang J, Jiang MQ , et al. Assessing the utility of structure in amorphous materials. The Journal of Chemical Physics, 2019,150:114502
    [18] Hu YC, Tanaka H, Wang WH . Impact of spatial dimension on structural ordering in metallic glass. Physical Review E, 2017,96:022613
    [19] 李茂枝 . 非晶合金及合金液体的局域五次对称性. 物理学报, 2017,66:176107
    [19] ( Li Maozhi . Five-fold local symmetries in metallic liquids and glasses. Acta Physica Sinica, 2017,66:176107 (in Chinese))
    [20] Zhang Q, Li QK, Zhao S , et al. Structural characteristics in deformation mechanism transformation in nanoscale metallic glasses. Journal of Physics: Condensed Matter, 2019,31:455401
    [21] Fultz B . Vibrational thermodynamics of materials. Progress in Materials Science, 2010,55:247-352
    [22] Chen K, Ellenbroek WG, Zhang Z , et al. Low-Frequency Vibrations of Soft Colloidal Glasses. Physical Review Letters, 2010,105:025501
    [23] Yang J, Wang YJ, Ma E , et al. Structural parameter of orientational order to predict the Boson vibrational anomaly in glasses. Physical Review Letters, 2019,122:015501
    [24] Baggioli M, Zaccone A . Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials. Physical Review Letters. 2019,122:145501
    [25] Widmer-Cooper A, Perry H, Harrowell P , et al. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nature Physics, 2008,4:711-715
    [26] Manning ML, Liu AJ . Vibrational modes identify soft spots in a sheared disordered packing. Physical Review Letters, 2011,107:108302
    [27] Ding J, Patinet S, Falk ML , et al. Soft spots and their structural signature in a metallic glass. Proceedings of the National Academy of Sciences, 2014,111:14052-14056
    [28] Rottler J, Schoenholz SS, Liu AJ . Predicting plasticity with soft vibrational modes: From dislocations to glasses. PHYSICAL REVIEW E, 2014,89:42304
    [29] Ding J, Cheng YQ, Sheng H , et al. Universal structural parameter to quantitatively predict metallic glass properties. Nature Communications, 2016,7:13733
    [30] Fan Z, Ding J, Li QJ , et al. Correlating the properties of amorphous silicon with its flexibility volume. Physical Review B, 2017,95:144211
    [31] 时北极, 何国威, 王士召 . 基于滑移速度壁模型的复杂边界湍流大涡模拟. 力学学报, 2019,51(3):754-766
    [31] ( Shi Beiji, He Guowei, Wang Shizhao . Large-eddy simulation of flows with complex geometries by using the slip-wall model. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2019,51:754-766 (in Chinese))
    [32] 孟春宇, 汤正俊, 陈明祥 . 基于中间构形的大变形弹塑性模型. 力学学报, 2019,51(1):182-191
    [32] ( Meng Chunyu, Tang Zhengjun, Chen Mingxiang . A large deformation elastoplastic model based on the intermediate configuration. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):182-191 (in Chinese))
    [33] 刘静, 李杰, 张恒 . 基于速度梯度张量特征值的陷窝内旋涡分析. 力学学报, 2019,51(3):826-834
    [33] ( Liu Jing, Li Jie, Zhang Heng . Dimple's Vortex analysis based on eigenvalue of velocity gradient tensor. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):826-834 (in Chinese))
    [34] Xu B, Falk ML, Li JF , et al. Predicting shear transformation events in metallic glasses. Physical Review Letters, 2018,120:125503
    [35] DiDonna BA, Lubensky TC . Nonaffine correlations in random elastic media. Physical Review E, 2005,72:066619
    [36] Cheng YQ, Ma E, Sheng HW . Atomic level structure in multicomponent bulk metallic glass. Physical Review Letters, 2009, 102:
    [37] Plimpton S . Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995,117:1-19
    [38] Stukowski A . Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010,18:7
    [39] Wang B, Luo L, Guo E , et al. Nanometer-scale gradient atomic packing structure surrounding soft spots in metallic glasses. npj Computational Materials, 2018,4:41
    [40] Maloney C, Lema?tre A . Universal breakdown of elasticity at the onset of material failure. Physical Review Letters, 2004,93:195501
    [41] Wang WH . Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids. Journal of Applied Physics, 2011,110:053521
    [42] Falk ML, Langer JS . Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 1998,57:7192-7205
    [43] Shimizu F, Ogata S, Li J . Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations. Materials Transactions, 2007,48:2923-2927
    [44] Hu YC, Guan PF, Li MZ , et al. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Physical Review B, 2016,93:214202
    [45] Wei D, Yang J, Jiang MQ , et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule. Physical Review B, 2019,99:014115
    [46] Zink M, Samwer K, Johnson WL , et al. Plastic deformation of metallic glasses: Size of shear transformation zones from molecular dynamics simulations. Physical Review B, 2006,73:172203
    [47] Zaccone A, Scossa-Romano E . Approximate analytical description of the nonaffine response of amorphous solids. Physical Review B, 2011,83:184205
    [48] ?opu D, Stukowski A, Stoica M , et al. Atomic-level processes of shear band nucleation in metallic glasses. Physical Review Letters, 2017,119:195503
    [49] Gendelman O, Jaiswal PK, Procaccia I , et al. Shear transformation zones: State determined or protocol dependent? EPL, 2015,109:16002
  • 期刊类型引用(5)

    1. 田大平,汪敏. 黎曼流形上三个微分算子各自在共形度量下的关系式. 江汉大学学报(自然科学版). 2022(01): 27-32 . 百度学术
    2. 田大平,汪敏. 两种特殊坐标系下Laplace算子的推导. 江汉大学学报(自然科学版). 2021(02): 29-34 . 百度学术
    3. 郝奇,乔吉超,Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报. 2020(02): 360-368 . 本站查看
    4. 陈迎红,王云江,乔吉超. La_(30)Ce_(30)Al_(15)Co_(25)金属玻璃应力松弛行为. 力学学报. 2020(03): 740-748 . 本站查看
    5. 张浪渟,Vitaly A Khonik,乔吉超. 铜基非晶合金热效应和剪切模量变化起源. 力学学报. 2020(06): 1709-1718 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  1962
  • HTML全文浏览量:  317
  • PDF下载量:  144
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-12-23
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回