EI、Scopus 收录
中文核心期刊

平面波输入下海水-海床-结构动力相互作用分析

陈少林, 孙杰, 柯小飞

陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析[J]. 力学学报, 2020, 52(2): 578-590. DOI: 10.6052/0459-1879-19-354
引用本文: 陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析[J]. 力学学报, 2020, 52(2): 578-590. DOI: 10.6052/0459-1879-19-354
Chen Shaolin, Sun Jie, Ke Xiaofei. ANALYSIS OF WATER-SEABED-STRUCTURE DYNAMIC INTERACTION EXCITED BY PLANE WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 578-590. DOI: 10.6052/0459-1879-19-354
Citation: Chen Shaolin, Sun Jie, Ke Xiaofei. ANALYSIS OF WATER-SEABED-STRUCTURE DYNAMIC INTERACTION EXCITED BY PLANE WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 578-590. DOI: 10.6052/0459-1879-19-354
陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析[J]. 力学学报, 2020, 52(2): 578-590. CSTR: 32045.14.0459-1879-19-354
引用本文: 陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析[J]. 力学学报, 2020, 52(2): 578-590. CSTR: 32045.14.0459-1879-19-354
Chen Shaolin, Sun Jie, Ke Xiaofei. ANALYSIS OF WATER-SEABED-STRUCTURE DYNAMIC INTERACTION EXCITED BY PLANE WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 578-590. CSTR: 32045.14.0459-1879-19-354
Citation: Chen Shaolin, Sun Jie, Ke Xiaofei. ANALYSIS OF WATER-SEABED-STRUCTURE DYNAMIC INTERACTION EXCITED BY PLANE WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 578-590. CSTR: 32045.14.0459-1879-19-354

平面波输入下海水-海床-结构动力相互作用分析

基金项目: 1)国家自然科学基金资助项目(51978337)
详细信息
    通讯作者:

    陈少林

  • 中图分类号: TU435

ANALYSIS OF WATER-SEABED-STRUCTURE DYNAMIC INTERACTION EXCITED BY PLANE WAVES

  • 摘要: 海洋工程结构的地震反应分析是保证海洋工程结构地震安全的重要环节.由于其所处的复杂环境, 该问题涉及到流固耦合和土-结相互作用.本文基于海水、饱和海床、基岩流固耦合统一计算框架,采用Davidenkov模型和修正的Masing准则考虑饱和海床的非线性,在脉冲SV波垂直入射下, 进行了海域场地和海洋工程结构的动力响应分析. 首先,对比分析了线性自由场和非线性自由场输入情形的海域场地非线性反应,结果表明线性自由场输入时反应不合理,自由场分析和场地分析应该采用相一致的本构模型. 然后,对比分析了海床分别为线性和非线性情形时,海域场地以及海水-海床-结构体系的反应特征. 与线性海床情形相比,非线性对海床反应的影响主要由如下两方面因素控制: 一方面,非线性导致饱和海床模量减小, 饱和海床与基岩间的波阻抗比减小,由基岩到饱和海床间的反射系数和透射系数增加, 导致反应增大; 另一方面,非线性导致阻尼加大, 使海床反应减小. 对于本文算例而言,阻尼对非线性海床结果的影响占主导作用.
    Abstract: The seismic response analysis of marine engineering structures is important to ensure the seismic safety of these structures. Marine engineering structures are always built in a complex environment where there are both water and soil. So both fluid-structure interaction and soil-structure interaction need to be considered in seismic response analysis of marine engineering structures. This paper is based on the unified calculation framework for wave motion in water-saturated seabed-bedrock system, and uses the Davidenkov model and modified Masing rule to describe the nonlinear characteristics of saturated seabed. The dynamic responses of marine sites and marine engineering structures when the pulse SV wave incident vertically are analyzed. First, the nonlinear responses of marine sites under the input of linear free field and nonlinear free field are analyzed comparatively. The results show that the nonlinear response of the marine site under the input of the linear free field is unreasonable. So it means the consistent constitutive model should be used for the free field analysis and finite element analysis of marine site. Then, the characteristics of responses of the marine site and water-saturated seabed-bedrock system when the seabed is linear or nonlinear are analyzed comparatively. Compared with the case that the seabed is linear, the influence of nonlinearity on response of seabed is mainly controlled by the following two factors: on the one hand, the modulus of saturated seabed decreases because of nonlinearity, so the wave impedance ratio between saturated seabed and bedrock decreases, and then, the reflection coefficient and transmission coefficient from bedrock to saturated seabed increase, resulting in the increase of response; on the other hand, the nonlinearity of saturated seabed causes the increase of damping, resulting in the decrease of response. For the example in this paper, the effect of damping dominate the result when seabed is nonlinear.
  • [1] 房营光, 孙钧 . 平台-群桩-水流-土体系统的地震反应分析. 土木工程学报, 1998(5):56-64
    [1] ( Fang Yingguang, Sun Jun . Earthquake response analysis of platform-pile group-water-soil system. China Civil Engineering Journal, 1998(5):56-64 (in Chinese))
    [2] 李忠献, 黄信 . 地震和波浪联合作用下深水桥梁的动力响应. 土木工程学报, 2012(11):134-140
    [2] ( Li Zhongxian, Huang Xin . Dynamic responses of bridges in deep water under combined earthquake and wave actions. China Civil Engineering Journal, 2012(11):134-140 (in Chinese))
    [3] 崔杰, 周鹏, 李亚东 等. 地震作用下海底沉管隧道的动力响应分析. 地震工程与工程振动, 2016,36(4):96-102
    [3] ( Cui Jie, Zhou Peng, Li Yadong , et al. Earthquake dynamic response analysis of seabed under the action of immersed tunnel. Earthquake Engineering and Engineering Vibration, 2016,36(4):96-102 (in Chinese))
    [4] 李伟华 . 考虑水-饱和土场地-结构耦合时的沉管隧道地震反应分析. 防灾减灾工程学报, 2010,30(6):607-613
    [4] ( Li Weihua . Seismic Response analysis of immersed tube tunnels considering water saturated soil site structure coupling. Journal of Disaster Prevention and Mitigation Engineering, 2010,30(6):607-613 (in Chinese))
    [5] Goyal A, Chopra AK . Earthquake analysis of intake-outlet towers including tower-water-foundation-soil interaction. Earthquake Engineering and Structural Dynamics, 1989(18):325-344
    [6] Spyrakos CC, Xu C . Soil-structure-water interaction of intake-outlet towers allowed to uplift. Soil Dynamics & Earthquake Engineering, 1997,16(2):151-159
    [7] Arablouei A, Gharabaghi ARM, Ghalandarzadeh A , et al. Effects of seawater-structure-soil interaction on seismic performance of caisson-type quay wall. Computers & Structures, 2011,89(23):2439-2459
    [8] Ye JH, Wang G . Seismic dynamics of offshore breakwater on liquefiable seabed foundation. Soil Dynamics and Earthquake Engineering, 2015,76:86-99
    [9] Wang P, Zhao M, Du X L , et al. Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay. Soil Dynamics & Earthquake Engineering, 2018,113:47-57
    [10] Idriss IM, Seed HB . Seismic response of horizontal soil layers. Journal of the Soil Mechanics and Foundation Division, ASCE, 1968,94(SM4):1003-1031
    [11] 李小军 . 一维土层地震反应线性化计算程序//廖振鹏. 地震小区化-理论与实践. 北京: 地震出版社, 1989: 250-265
    [11] ( Li Xiaojun. A computer program for calculating earthquake response of ground layered soil//Liao Zhenpeng. Seismic Microzonation——Theory and Practice. Beijing: Seismological Press, 1989: 250-265(in Chinese))
    [12] 张克绪, 李明宰, 王治琨 . 基于非曼辛准则的土体弹塑性模型. 地震工程与工程振动, 1997,17(2):74-81
    [12] ( Zhang Kexu, Li Mingzai, Wang Zhikun . Dynamic elastic-plastic models of soils basing on non-mansing's rule. Earthquake Engineering and Engineering Vibration, 1997,17(2):74-81 (in Chinese))
    [13] 陈国兴, 庄海洋 . 基于Davidenkov骨架曲线的土体动力本构关系及其参数研究. 岩土工程学报, 2005,27(8):860-864
    [13] ( Chen Guoxing, Zhuang Haiyang . Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve. Chinese Journal of Geotechnical Engineering, 2005,27(8):860-864 (in Chinese))
    [14] 赵丁凤, 阮滨, 陈国兴 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证. 岩土工程学报, 2017,39(5):888-895
    [14] ( Zhao Dingfeng, Ruan Bin, Chen Guoxing , et al. Validation of the modified irregular loading- reloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS. Chinese Journal of Geotechnical Engineering, 2017,39(5):888-895 (in Chinese))
    [15] 陈少林, 朱学江, 赵宇昕 等. 考虑土骨架非线性的饱和土-结构相互作用分析. 地震工程与工程振动, 2019,39(1):114-127
    [15] ( Chen Shaolin, Zhu Xuejiang, Zhao Yuxin , et al. Analysis of saturated soil-structure interaction considering nonlinearity of soil skeleton. Earthquake Engineering and Engineering Vibration, 2019,39(1):114-127 (in Chinese))
    [16] Hashash YMA, Groholski DR, Phillips CA , et al. DEEPSOIL 5.0 User Manual and Tutorial. 2011
    [17] Lee MKW, Finn W . DESRA-2: Dynamic Effective Stress Response Analysis of Soil Deposits with Energy Transmitting Boundary Including Assessment of Liquefaction Potential. The University of British Columbia, Faculty of Applied Science, Vancouver, British Columbia, 1978
    [18] Martin PP, Seed HB . One-dimensional dynamic ground response analyses. Journal of Geotechnical Engineering, ASCE, 1982,108(7):935-952
    [19] 赵宇昕, 陈少林 . 关于传递矩阵法分析饱和成层介质响应问题的讨论. 力学学报, 2016,48(5):1145-1158
    [19] ( Zhao Yuxin, Chen Shaolin . Discussion on the matrix propagator method to analyze the response of saturated layered media. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1145-1158 (in Chinese))
    [20] 柯小飞, 陈少林, 张洪翔 . P-SV波入射时海水-层状海床体系的自由场分析. 振动工程学报, 2018, 录用
    [20] ( Ke Xiaofei, Chen Shaolin, Zhang Hongxiang . Freefield analysis of seawater-layered seabed system at P-SV wave incident. Journal of Vibration Engineering, 2018, accepted (in Chinese))
    [21] 陈少林, 宗娟 . 平面波任意角度入射时波动散射问题输入的一种实现方法. 固体力学学报, 2018,39(1):80-89
    [21] ( Chen Shaolin, Zong Juan . Wave input method for three-dimensional wave scattering simulation of an incident wave in an arbitrary direction. Chinese Journal of Solid Mechanics, 2018,39(1):80-89 (in Chinese))
    [22] 李山有, 廖振鹏 . 地震体波斜入射情形下台阶地形引起的波型转换. 地震工程与工程振动, 2002,22(4):9-15
    [22] ( Li Shanyou, Liao Zhenpeng . Wave-type conversion caused by a step topography subjected to inclined seismic body wave. Earthquake Engineering and Engineering Vibration, 2002,22(4):9-15 (in Chinese))
    [23] 刘晶波, 王艳 . 成层半空间出平面自由波场的一维化时域算法. 力学学报, 2006,38(2):219-225
    [23] ( Liu Jingbo, Wang Yan . A 1-D time-domain methed for 2-D wave motion in elastic layers half-space by antiplane wave oblique incidence. Chinese Journal of Theoretical and Applied Mechanics, 2006,38(2):219-225 (in Chinese))
    [24] 黄璟奇 . 岩体隧道非线性地震响应分析. [博士论文]. 北京: 北京工业大学, 2015
    [24] ( Huang Jingqi . Study on nonlinear seismic response of rock tunnels. [PhD Thesis]. Beijing: Beijing University of Technology, 2015 (in Chinese))
    [25] 陈少林, 柯小飞, 张洪翔 . 海洋地震工程流固耦合问题的统一计算框架. 力学学报, 2019,51(2):594-606
    [25] ( Chen Shaolin, Ke Xiaofei, Zhang Hongxiang . A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):594-606 (in Chinese))
    [26] 陈少林, 程书林, 柯小飞 . 海洋地震工程流固耦合问题的统一计算框架-不规则界面情形. 力学学报, 2019,51(5):1517-1529
    [26] ( Chen Shaolin, Cheng Shulin, Ke Xiaofei . A unified computational framework for fluid-solid coupling in marine earthquake engineering: irregular interface case. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1517-1529 (in Chinese))
    [27] Biot MA . Theory of propagation of elastic waves in a fluid-saturated porous solid. Acoust Soc Am, 1956,28:168-191
    [28] Biot MA . Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962,33(4):1482-1498
    [29] Liao ZP, Wong HL . A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dynamics and Earthquake Engineering, 1984,3:174-183
    [30] Chen SL, Liao ZP . Multi-transmitting formula for attenuating waves. Acta Seismologica Sinica, 2003,16(3):283-291
    [31] Deresiewicz H, Rice JT . The effect of boundaries on wave propagation in a liquid-filled porous solid: V. Transmission across a plane interface. Bulletin of the Seismological Society of America, 1964,54(1):409-416
    [32] Deresiewicz H . The effect of boundaries on wave propagation in a liquid-filled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer. Bulletin of the Seismological Society of America, 1964,54(1):425-430
  • 期刊类型引用(8)

    1. 涂佳黄,伍磊,张志豪. 不同入射波对自由浮体结构运动特性的影响. 湘潭大学学报(自然科学版). 2024(03): 22-34 . 百度学术
    2. 于彦彦,芮志良,丁海平. 三维局部场地地震波散射问题谱元并行模拟方法. 力学学报. 2023(06): 1342-1354 . 本站查看
    3. 黄朝龙,陈少林,张丽芳,沈吉荣. 水深对跨库区桥梁地震响应的影响分析. 地震工程与工程振动. 2023(05): 33-45 . 百度学术
    4. 邢浩洁,刘爱文,李小军,陈苏,傅磊. 多人工波速优化透射边界在谱元法地震波动模拟中的应用. 地震学报. 2022(01): 26-39 . 百度学术
    5. 邢浩洁,李小军,刘爱文,李鸿晶,周正华,陈苏. 弹性波模拟中局部透射边界的反射特征及参数优化. 振动与冲击. 2022(12): 301-312 . 百度学术
    6. 孔曦骏,邢浩洁,李鸿晶. 流固耦合地震波动问题的显式谱元模拟方法. 力学学报. 2022(09): 2513-2528 . 本站查看
    7. 邢浩洁,李小军,刘爱文,李鸿晶,周正华,陈苏. 波动数值模拟中的外推型人工边界条件. 力学学报. 2021(05): 1480-1495 . 本站查看
    8. 孔曦骏,邢浩洁,李鸿晶,周正华. 多次透射公式飘移问题的控制方法. 力学学报. 2021(11): 3097-3109 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  1350
  • HTML全文浏览量:  211
  • PDF下载量:  89
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-12-13
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回