EI、Scopus 收录
中文核心期刊

应用边界积分法求圆形夹杂问题的解析解

郭树起

郭树起. 应用边界积分法求圆形夹杂问题的解析解[J]. 力学学报, 2020, 52(1): 73-81. DOI: 10.6052/0459-1879-19-283
引用本文: 郭树起. 应用边界积分法求圆形夹杂问题的解析解[J]. 力学学报, 2020, 52(1): 73-81. DOI: 10.6052/0459-1879-19-283
Guo Shuqi. EXACT SOLUTION OF CIRCULAR INCLUSION PROBLEMS BY A BOUNDARY INTEGRAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 73-81. DOI: 10.6052/0459-1879-19-283
Citation: Guo Shuqi. EXACT SOLUTION OF CIRCULAR INCLUSION PROBLEMS BY A BOUNDARY INTEGRAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 73-81. DOI: 10.6052/0459-1879-19-283
郭树起. 应用边界积分法求圆形夹杂问题的解析解[J]. 力学学报, 2020, 52(1): 73-81. CSTR: 32045.14.0459-1879-19-283
引用本文: 郭树起. 应用边界积分法求圆形夹杂问题的解析解[J]. 力学学报, 2020, 52(1): 73-81. CSTR: 32045.14.0459-1879-19-283
Guo Shuqi. EXACT SOLUTION OF CIRCULAR INCLUSION PROBLEMS BY A BOUNDARY INTEGRAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 73-81. CSTR: 32045.14.0459-1879-19-283
Citation: Guo Shuqi. EXACT SOLUTION OF CIRCULAR INCLUSION PROBLEMS BY A BOUNDARY INTEGRAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 73-81. CSTR: 32045.14.0459-1879-19-283

应用边界积分法求圆形夹杂问题的解析解

基金项目: 1) 国家自然科学基金资助项目(11272219)
详细信息
    通讯作者:

    郭树起

  • 中图分类号: O302

EXACT SOLUTION OF CIRCULAR INCLUSION PROBLEMS BY A BOUNDARY INTEGRAL METHOD

  • 摘要: 边界元方法作为一种数值方法, 在各种科学工程问题中得到了广泛的应用.本文参考了边界元法的求解思路, 从Somigliana等式出发, 利用格林函数性质,得到了一种边界积分法, 使之可以用来寻求弹性问题的解析解.此边界积分法也可以从Betti互易定理得到. 应用此新方法, 求解了圆形夹杂问题.首先设定夹杂与基体之间完美连接, 将界面处的位移与应力按照傅里叶级数展开,根据问题的对称性与三角函数的正交性来简化假设, 减少待定系数的个数.其次选择合适的试函数(试函数满足位移单值条件以及无体力的线弹性力学问题的控制方程),应用边界积分法, 求得界面处的位移与应力的值. 然后再求解域内位移与应力.得到了问题的精确解析解, 当夹杂弹性模量为零或趋向于无穷大时,退化为圆孔或刚性夹杂问题的解析解. 求解过程表明,若问题的求解区域包含无穷远处时, 所取的试函数应满足无穷远处的边界条件.若求解区域包含坐标原点, 试函数在原点处位移与应力应是有限的.结果表明了此方法的有效性.
    Abstract: As an excellent numerical method, boundary element method (BEM) has been widely applied in various scientific and engineering problems. In this paper, a new boundary integral method is obtained based on Somigliana's equation and the properties of Green's function by referring to the idea of boundary element method. It can be used to find the analytic solution of linear elastic problems. The boundary integral method can also be obtained from Betti's reciprocity theorem. By using this new method, the classical problem of elastic circular inclusion under a uniform tensile field at infinity is solved. Firstly, the perfect bonding between inclusion and matrix is set up, and the displacement and stress at interface are expanded according to Fourier series. According to the symmetry of the problem and the orthogonality of trigonometric function, the hypothesis is simplified and the number of undetermined coefficients is reduced. Secondly, the appropriate trial functions are selected (these trial functions satisfy the condition of displacement single value and the control equation of linear elasticity without body force). And the boundary integral method is used to calculate the displacement and stress at the interface. Then the displacement and stress in the domain are solved using similar tricks. The exact analytical solution of the problem is obtained, which is exactly the same with the results in literatures. When the elastic modulus of the inclusion is zero or tends to infinity, it degenerates to the analytical solution of the problem of circular hole or rigid inclusion. The solution process shows that if the problem has boundary conditions at infinity, trial functions should meet the boundary condition at infinity. If the domain of the problem contains the coordinate origin, the displacement and stress of trial functions at the origin should be limited. The results show that the method is effective.
  • [1] Hartmann F . Introduction to Boundary Elements: Theory and Applications. New York: Springer, 1989
    [2] Gaul L, Martin K, Marcus W . Boundary Element Methods for Engineers and Scientists: An Introductory Course with Advanced Topics. Berlin: Springer, 2003
    [3] Katsikadelis JT. The Boundary Element Method for Engineers and Scientists: Theory and Applications. New York: Academic Press, 2016
    [4] 姚振汉, 王海涛 . 边界元法. 北京: 高等教育出版社, 2010
    [4] ( Yao Zhenhan, Wang Haitao . Boundary Element Methods. Beijing: Higher Education Press, 2010 (in Chinese))
    [5] 马西奎 . 电磁场积分方程法、积分微分方程法和边界元法. 北京: 科学出版社, 2017
    [5] ( Ma Xikui . Integral Equation Method, Integral Differential Equation Method and Boundary Element Method for Electromagnetic Field. Beijing: Science Press, 2017(in Chinese))
    [6] 肖洪天, 岳中琦 . 梯度材料断裂力学的新型边界元法分析. 北京: 高等教育出版社, 2011
    [6] ( Xiao Hongtian, Yue Zhongqi. New Boundary Element Analysis of Fracture Mechanics in Functionally Graded Mater. Beijing: Higher Education Press, 2011 (in Chinese))
    [7] 程万, 金衍 . 基于边界元法的水力压裂数值模拟技术. 北京: 科学出版社, 2018
    [7] ( Cheng Wan, Jin Yan. Numerical Simulation of Hydraulic Fracturing Based on Boundary Element Method. Beijing: Science Press, 2018 (in Chinese))
    [8] 周斌珍, 陈中飞 . 波物相互作用的全非线性边界元数值方法与应用. 哈尔滨: 哈尔滨工程大学出版社, 2018
    [8] ( Zhou Binzhen, Chen Zhongfei. Boundary Element Method and Application for Fully Nonlinear Wave-Structure Interaction. Harbin: Harbin Engineering University Press, 2018 (in Chinese))
    [9] 李成勇, 刘启国, 周珺 等. 点源函数和边界元方法求解油藏渗流问题. 北京: 科学出版社, 2016
    [9] ( Li Chengyong, Liu Qiguo, Zhou qun , et al. Point Source Function and Boundary Element Method for Reservoir Percolation Problem. Beijing: Science Press, 2016 (in Chinese))
    [10] 程长征 . 涂层结构和V形切口界面强度的边界元法分析研究. 合肥: 合肥工业大学出版社, 2012
    [10] ( Cheng Changzheng. Study on Interface Strength of Coating Structure and V-notch by Boundary Element Method. Hefei: Hefei University of Technology Press, 2012 (in Chinese))
    [11] 覃新川 . 电磁理论中的边界元方法探索. 北京: 科学出版社, 2017
    [11] ( Tan Xinchuan. Exploration of Boundary Element Method in Electromagnetic Theory. Beijing: Science Press, 2017 (in Chinese))
    [12] 李顺才, 董正筑, 赵慧明 . 弹性薄板弯曲及平面问题的自然边界元方法. 北京: 科学出版社, 2011
    [12] ( Li Shuncai and Dong Zhengzhu, Zhao Huiming . Natural Boundary Element Method for Bending and Plane Problems of Elastic Thin Plates. Beijing : Science Press, 2011 (in Chinese))
    [13] 祝家麟, 袁政强 . 边界元分析. 北京: 科学出版社, 2009
    [13] ( Zhu Jialin, Yuan Zhengqiang . Boundary Element Analysis. Beijing: Science Press, 2009 (in Chinese))
    [14] 余德浩 . 自然边界元方法的数学理论. 北京: 科学出版社, 1993
    [14] ( Yu Dehao. Mathematical Theory of Natural Boundary Element Method. Beijing: Science Press, 1993 (in Chinese))
    [15] 吴正鹏 . 自然边界元在非线性问题及电磁场中的应用. 合肥: 安徽大学出版社, 2011
    [15] ( Wu Zhengpeng. Application of Natural Boundary Element in Nonlinear Problems and Electromagnetic Fields. Hefei: Anhui University Press, 2011 (in Chinese))
    [16] Ang WF. Hypersingular Integral Equations in Fracture Analysis. UK: Woodhead Publishing Limited, 2013
    [17] 陈磊磊, 卢闯, 徐延明 等. 细分曲面边界元法的黏附吸声材料结构拓扑优化分析. 力学学报, 2019,51(3):884-893
    [17] ( Chen Leilei, Lu Chuang, Xu Yanming , et al. Topology optimization analysis of adhesive sound absorbing materials structure with subdivision surface boundary element method. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):884-893 (in Chinese))
    [18] 周琪, 陈永强 . 轴对称薄壁结构自由振动的边界元分析. 力学学报, 2019,51(1):146-158
    [18] ( Zhou Qi, Chen Yongqiang . Free vibration analysis of thin-walled axisymmetric structures with boundary element method. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):146-158 (in Chinese))
    [19] 余远锋, 李泽卫, 郑晓亚 . 粗糙表面之间接触热阻反问题研究. 力学学报, 2018,50(3):479-486
    [19] ( Yu Yuangfeng, Li Zewei, Zheng Xiaoya . The inverse problem of thermal contact resistance between rough surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):479-486 (in Chinese))
    [20] Kazumi W. Integral Transform Techniques for Green's Function. Switzerland: Springer International Publishing, 2014
    [21] Selvadurai APS . An application of Betti' s reciprocal theorem for the analysis of an inclusion problem. Engineering Analysis with Boundary Elements, 2000,24(10):759-765
    [22] Love AEH. A Treatise on The Mathematical Theory of Elasticity. Cambrdge: Cambridge University Press, 1927
    [23] Michell JH. . On the direct determination of stress in an elastic solid, with application to the theory of plates. Proceedings of the London Mathematical Society, 1899,31(1):100-124
    [24] Martin H S . Elasticity: Theory, Applications, and Numerics. New York: Elsevier Butterworth-Heinemann, 2005
    [25] Little RW . Elasticity. Englewood Cliffs: Prentice Hall, 1973
    [26] Goodier JN . Concentration of stress around spherical and cylindrical inclusions and flaws. Trans, ASME, 1933,55(1):39-44
    [27] Muskhelishvili NI . Some Basic Problems on the Mathematical Theory of Elasticity. Berlin: Springer Netherlands, 1953
    [28] Dundurs J, Hetenyi M . The elastic plane with a circular insert, loaded by a radial force. ASME, Journal of Applied Mechanics, 1961,28(1):103-111
    [29] 王敏中, 王炜, 武际可 . 弹性力学教程. 北京: 北京大学出版社, 2011
    [29] ( Wang Minzhong, Wang Wei, Wu Jike. A Course on Elasticity. Beijing: Beijing University Press, 2011 (in Chinese))
    [30] Edmonds DV, Beevers CJ . The effect of inclusions on the stress distribution in solids. Journal of Materials Science, 1968,3(5):457-463
    [31] 徐芝纶 . 弹性力学(第四版) . 北京: 高等教育出版社, 2014
    [31] ( Xu Zhilun. Elasticity (The Fourth Edition). Beiing: Higher Education Press, 2014 (in Chinese))
    [32] Kachanov ML, Shafiro B, Tsukrov I . Handbook of Elasticity Solutions. Berlin: Springer Science & Business Media, 2003
    [33] Barber JB . Elasticity (3rd Edition). New York: Springer Netherlands, 2010
    [34] Timoshenko S, Goodier JN . Theory of Elasticity. New York: Mcgraw-Hill, 1951
    [35] 郭树起 . 边界积分法在振动问题中的应用// 中国振动工程学会, 第十三届全国振动理论及应用学术会议论文集, 2019: 178-183
    [35] ( Guo Shuqi . Application of boundary integral methods to vibration problems// Chinese Society for Vibration Engineering, Proceedings of the 13th National Conference on vibration theory and Application, 2019: 178-183 (in Chinese))
  • 期刊类型引用(5)

    1. 章月华,刘彦,吕庆田,陈召曦,严加永. 二氧化碳地质封存地球物理监测技术研究进展与应用展望. 中国地质. 2025(01): 159-179 . 百度学术
    2. 孙亚军,熊小锋,陈歌,徐智敏,张莉,赵先鸣,DMYTRO Rudakov. 煤矿矿井水水质形成及演化的水动力场-水化学场-微生物场耦合作用与数值模拟. 煤炭学报. 2024(02): 941-957 . 百度学术
    3. 罗瑜,母若愚,张婷婷,秦楠,周俊豪,甘泉,李波. 罗家寨气田CO_2地质封存数值模拟研究. 新能源进展. 2024(02): 201-208 . 百度学术
    4. 周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 . 本站查看
    5. 马馨蕊,梁杰,李清,袁勇,陈建文,骆迪,赵化淋,宋鹏. 咸水层CO_2地质封存研究进展及前景展望. 海洋地质前沿. 2024(10): 1-18 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1582
  • HTML全文浏览量:  334
  • PDF下载量:  166
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-10-13
  • 刊出日期:  2020-02-09

目录

    /

    返回文章
    返回