EI、Scopus 收录
中文核心期刊

主动控制压电旋转悬臂梁的参数振动稳定性分析

唐冶, 王涛, 丁千

唐冶, 王涛, 丁千. 主动控制压电旋转悬臂梁的参数振动稳定性分析[J]. 力学学报, 2019, 51(6): 1872-1881. DOI: 10.6052/0459-1879-19-211
引用本文: 唐冶, 王涛, 丁千. 主动控制压电旋转悬臂梁的参数振动稳定性分析[J]. 力学学报, 2019, 51(6): 1872-1881. DOI: 10.6052/0459-1879-19-211
Tang Ye, Wang Tao, Ding Qian. STABILITY ANALYSIS ON PARAMETRIC VIBRATION OF PIEZOELECTRIC ROTATING CANTILEVER BEAM WITH ACTIVE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1872-1881. DOI: 10.6052/0459-1879-19-211
Citation: Tang Ye, Wang Tao, Ding Qian. STABILITY ANALYSIS ON PARAMETRIC VIBRATION OF PIEZOELECTRIC ROTATING CANTILEVER BEAM WITH ACTIVE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1872-1881. DOI: 10.6052/0459-1879-19-211
唐冶, 王涛, 丁千. 主动控制压电旋转悬臂梁的参数振动稳定性分析[J]. 力学学报, 2019, 51(6): 1872-1881. CSTR: 32045.14.0459-1879-19-211
引用本文: 唐冶, 王涛, 丁千. 主动控制压电旋转悬臂梁的参数振动稳定性分析[J]. 力学学报, 2019, 51(6): 1872-1881. CSTR: 32045.14.0459-1879-19-211
Tang Ye, Wang Tao, Ding Qian. STABILITY ANALYSIS ON PARAMETRIC VIBRATION OF PIEZOELECTRIC ROTATING CANTILEVER BEAM WITH ACTIVE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1872-1881. CSTR: 32045.14.0459-1879-19-211
Citation: Tang Ye, Wang Tao, Ding Qian. STABILITY ANALYSIS ON PARAMETRIC VIBRATION OF PIEZOELECTRIC ROTATING CANTILEVER BEAM WITH ACTIVE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1872-1881. CSTR: 32045.14.0459-1879-19-211

主动控制压电旋转悬臂梁的参数振动稳定性分析

基金项目: 1) 国家自然科学基金项目(51575378);1) 国家自然科学基金项目(11902001);1) 国家自然科学基金项目(11972245);中国博士后科学基金项目(2018M641643);安徽省自然科学基金项目(1908085QA13)
详细信息
    通讯作者:

    丁千

  • 中图分类号: O322

STABILITY ANALYSIS ON PARAMETRIC VIBRATION OF PIEZOELECTRIC ROTATING CANTILEVER BEAM WITH ACTIVE CONTROL

  • 摘要: 在工程实际中旋转机械由于制造和加工误差,装配的不均匀性等原因,往往会脉动运行,这将使得机械系统发生参数振动. 当脉动参数满足一定关系时,这种参数振动将会失稳,进而影响机械结构的正常运转. 本文针对这一问题,引入压电材料对 脉动旋转悬臂梁系统的振动进行控制,研究主动控制悬臂梁系统的参数振动优化设计问题,采用 Hamilton 变分原理与一阶 Galerkin 离散相结合的方法,建立了受速度反馈传感器主动控制的压电旋转悬臂梁的一阶近似线性控制方程. 运用多尺度方法,得到了压电旋转悬臂梁系统在发生1/2亚谐波参数共振时稳定性边界的控制方程,并利用直接分析方法验证了解析摄动解的正确性. 将摄动解中临界阻尼比和轮毂角速度脉动幅值的无量纲参数作为评价系统稳定性能的指标. 通过数值算例,分析了轮毂半径、轮毂角速度平均值和脉动幅值、梁长以及速度传感器的反馈增益系数对系统稳定性区域的影响. 研究结果表明,梁长、轮毂半径、脉动幅值会降低系统稳定性,反馈增益系数可以提高系统稳定性,而轮毂角速度平均值与系统稳定性之间有非单调的关系. 为进一步设计压电旋转机械结构提供了理论依据.
    Abstract: In engineering application, rotating machines tend to be pulsating operation due to the errors of manufacturing and processing as well as the non-uniformity of assembly, which may cause parametric vibration of the system. Furthermore, if the pulsation parameters satisfy a certain relationship, the parametric vibration will cause the system to lose stability, which furtherly affects the normal operation of mechanical structures. In view of this problem, the piezoelectric material is introduced to suppress vibration of rotating cantilever beam subjected to parametric exciting. The problem about the parametric optimization and design of rotating cantilever beam with active control is studied in this paper. The first order approximate linear equation governing the piezoelectric rotating cantilever beam controlled by velocity feedback sensor is established based on the Hamilton' principle combining with the first-order Galerkin discretization method. Then, the multi-scale method is applied to obtain the governing equation of stability boundary of the piezoelectric rotating cantilever system with the 1/2 sub-harmonic parametric resonance. The correctness of the perturbation solution is verified by the direct analysis method. The critical damping ratio and the dimensionless parameter of pulsating amplitude of hub angular velocity in the perturbation solution are regarded as the indicators to evaluate the system stability. Numerical examples are presented to illustrate the effects of the hub radius, the average value and pulsating amplitude of hub angular velocity, the beam length and the feedback gain coefficient of velocity sensor on the dynamic stability. The results show that the stable region can be increased with the decrease of the beam length, the hub radius and pulsating amplitude of hub angular velocity, but the raise of the feedback gain coefficient, moreover, the relation between the average value of hub angular velocity and the stability is not monotonous. It provides a reference for the further design of piezoelectric rotating machinery structure.
  • 1 马辉, 孙帆, 殷帆丽 等. 基于悬臂板理论的旋转叶片-机匣振动响应分析. 振动工程学报, 2017,30(2):222-231
    1 ( Ma Hui, Sun Fan, Yin Fanli, et al. Vibration responses caused by the rubbing between rotating blade and casing based on cantilever plate theory. Journal of Vibration Engineering, 2017,30(2):222-231 (in Chinese))
    2 Yu Jin, Yu Luo, Yong Liu. Vibration reduction of a bearingless helicopter rotor with composite tailored couplings. Procedia Engineering, 2015,99:1372-1379
    3 赵婕, 于开平, 学忠 . 末端带有刚体的旋转梁运动稳定性分析. 力学学报, 2013,45(6):606-613
    3 ( Zhao Jie, Yu kaiping, Xue Zhong. The motion stability analysis of a rotating beam with a rigid body of its end. Chinese Journal of Theoretical and Applied mechanics, 2013,45(6):606-613 (in Chinese))
    4 李学常, 李书 . 无轴承式旋翼桨叶固有振动特性分析. 航空动力学报, 2011,26(6):1237-1243
    4 ( Li Xuechang, Li Shu, Natural vibration analysis of bearingless rotor blades. Journal of Aerospace Power, 2011,26(6):1237-1243 (in Chinese))
    5 Zhu KF, Chung JT. Vibration and stability analysis of a simply-supported Rayleigh beam with spinning and axial motions. Applied Mathematical Modelling, 2019,66:362-382
    6 Chen J, Li QS. Vibration characteristics of a rotating pre-twisted composite laminated blade. Composite Structures, 2019,208:78-90
    7 Gu XJ, Hao YX, Zhang W, et al. Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection. Applied Mathematical Modelling, 2019,68:327-352
    8 Ghafari E, Jalil R. Vibration analysis of rotating composite beams using polynomial based dimensional reduction method. International Journal of Mechanical Sciences, 2016,115:93-104
    9 谢丹, 蹇开林 . 改进EFG法用于旋转梁的刚柔耦合动力学研究. 振动工程学报, 2017,30(4):526-534
    9 ( Xie Dan, Jian Kailin, An improved EFG approach for rigid-flexible coupling dynamics of the rotating hub-beam system. Journal of Vibration Engineering, 2017,30(4):526-534 (in Chinese))
    10 瞿叶高, 华宏星, 谌勇 等. 复合材料旋转壳自由振动分析的新方法. 力学学报, 2013,45(1):139-143
    10 ( Qu Yegao, Hua Hongxing, Chen Yong, et al. A new method for free vibration analysis of composite laminated shells of revolution. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(1):139-143 (in Chinese))
    11 寇海江, 袁惠群, 赵天宇 . 旋转碰摩板热冲击振动的解析法研究. 力学学报, 2014,46(6):946-956
    11 ( Kou Haijiang, Yuan Huiqun, Zhao Tianyu, Analytical solution for rotational rubbing plate under thermal shock. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(6):946-956 (in Chinese))
    12 Hoskoti L, Misra A, Sucheendran MM. Frequency lock-in during vortex induced vibration of a rotating blade. Journal of Fluids and Structures, 2018,80:145-164
    13 Ke LL, Wang YS, Wang ZD. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Composite Structures, 2012,94(6):2038-2047
    14 Ke LL, Wang YS, Reddy JN. Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Composite Structures, 2014,116:626-636
    15 Ke LL, Liu C, Wang YS. Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions. Physica E: Low-dimensional Systems and Nanostructures, 2015,66:93-106
    16 张乐乐, 刘响林, 刘金喜 . 压电纳米板中SH型导波的传播特性. 力学学报, 2019,51(2):503-511
    16 ( Zhang Lele, Liu Xianglin, Liu Jinxi, Propagation characteristics of SH guided waves in piezoelectric nanoplate. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):503-511 (in Chinese))
    17 周伟建, 陈伟球 . 具有表面效应的压电半空间中的表面波. 力学学报, 2017,49(3):597-604
    17 ( Zhou Jianwei, Chen Weiqiu, Surface waves in a piezoelectric half-space with surface effect. Chinese Journalof Theoretical and Applied Mechanics, 2017,49(3):597-604 (in Chinese))
    18 李林利, 薛春霞 . 压电材料双曲壳热弹耦合作用下的混沌运动. 物理学报, 2019,68(1):165-173
    18 ( Li Linli, Xue Chunxia, Chaotic motion of piezoelectric material hyperbolic shell under thermoelastic coupling. Acta Physica Sinica, 2019,68(1):165-173 (in Chinese))
    19 Pradeesh EL, Udhayakumar S. Effect of placement of piezoelectric material and proof mass on the performance of piezoelectric energy harvester. Mechanical Systems and Signal Processing, 2019,130:664-676
    20 何燕丽, 赵翔 . 曲梁压电俘能器强迫振动的格林函数解. 力学学报, 2019,51(4):1170-1179
    20 ( He Yanli, Zhao Xiang, Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of Green's functions. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1170-1179 (in Chinese))
    21 Li MM, Fang Bo, Cao DQ, et al. Modeling and analysis of cantilever beam with active-passive hybrid piezoelectric network. Science China Technological Sciences, 2013,56(9):2326-2335
    22 李明明 . 新型压电约束层阻尼结构及其在整星隔振中的应用. [博士论文]. 哈尔滨:哈尔滨工业大学, 2014
    22 ( Li Mingming . Novel piezoelectric constrained layer damping treatment and its application on whole-spacecraft vibration isolation. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2014 (in Chinese))
    23 李凤明, 刘春川 . 非线性梁结构的参数振动稳定性及其主动控制. 应用数学和力学, 2012,33(11):1284-1293
    23 ( Li Fengming, Liu Chunchuan, Parametric vibration stability and active control of nonlinear beams. Applied Mathematics and Mechanics, 2012,33(11):1284-1293 (in Chinese))
    24 Li FM, Yao G, Zhang YM. Active control of nonlinear forced vibration in a flexible beam using piezoelectric material. Mechanics of Advanced Materials and Structures, 2015,23(3):311-317
    25 Chandiramani NK. Active control of a piezo-composite rotating beam using coupled plant dynamics. Journal of Sound and Vibration, 2010,329(14):2716-2737
    26 He XQ, Ng TY, Sivashanker S, et al. Active control of FGM plates with integrated piezoelectric sensors and actuators. International journal of Solids and Structures, 2001,38(9):1641-1655
    27 Selim BA, Zhang LW, Liew KM. Active vibration control of FGM plates with piezoelectric layers based on Reddy's higher-order shear deformation theory. Composite Structures, 2016,155:118-134
    28 Li JQ, Xue Y, Li FM, et al. Active vibration control of functionally graded piezoelectric material plate. Composite Structures, 2019,207:509-518
    29 Yoo HH, Shin SH. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration, 1998,212(5):807-828
    30 胡海岩 . 机械振动基础. 哈尔滨: 哈尔滨工业大学出版社, 2004
    30 ( Hu Haiyan. Mechanical Vibration Foundation. Harbin: Harbin University of Technology Press, 2004 (in Chinese))
    31 刘延柱, 陈立群 . 非线性振动. 北京: 高等教育出版社, 2001
    31 ( Liu Yanzhu, Chen Liqun. . Nonlinear Vibration Beijing: Higher Education Press, 2001 (in Chinese))
    32 Talimian A, Béda P. Dynamic stability of a size-dependent micro-beam. European Journal of Mechanics - A/Solids, 2018,72:245-251
    33 Chen C, Li S, Dai L, et al. Buckling and stability analysis of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces. Communications in Nonlinear Science and Numerical Simulation, 2014,19(5):1626-1637
    34 Chen, XC, Lu YX, Li YH. Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium. Applied Mathematical Modelling, 2019,67:430-448
    35 Brown JE, Hutt JM, Salma AE. Finite element solution to dynamic stability of bars. AIAA J, 1968,6(7):1423-1425
计量
  • 文章访问数:  1888
  • HTML全文浏览量:  406
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-01
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回