EI、Scopus 收录
中文核心期刊

电场作用下气泡上升行为特性的数值计算研究

王悦柔, 王军锋, 刘海龙

王悦柔, 王军锋, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究[J]. 力学学报, 2020, 52(1): 31-39. DOI: 10.6052/0459-1879-19-193
引用本文: 王悦柔, 王军锋, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究[J]. 力学学报, 2020, 52(1): 31-39. DOI: 10.6052/0459-1879-19-193
Wang Yuerou, Wang Junfeng, Liu Hailong. NUMERICAL SIMULATION ON BUBBLE RINSING BEHAVIORS UNDER ELECTRIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 31-39. DOI: 10.6052/0459-1879-19-193
Citation: Wang Yuerou, Wang Junfeng, Liu Hailong. NUMERICAL SIMULATION ON BUBBLE RINSING BEHAVIORS UNDER ELECTRIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 31-39. DOI: 10.6052/0459-1879-19-193
王悦柔, 王军锋, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究[J]. 力学学报, 2020, 52(1): 31-39. CSTR: 32045.14.0459-1879-19-193
引用本文: 王悦柔, 王军锋, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究[J]. 力学学报, 2020, 52(1): 31-39. CSTR: 32045.14.0459-1879-19-193
Wang Yuerou, Wang Junfeng, Liu Hailong. NUMERICAL SIMULATION ON BUBBLE RINSING BEHAVIORS UNDER ELECTRIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 31-39. CSTR: 32045.14.0459-1879-19-193
Citation: Wang Yuerou, Wang Junfeng, Liu Hailong. NUMERICAL SIMULATION ON BUBBLE RINSING BEHAVIORS UNDER ELECTRIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 31-39. CSTR: 32045.14.0459-1879-19-193

电场作用下气泡上升行为特性的数值计算研究

基金项目: 1) 国家自然科学基金资助项目(51761145011);国家自然科学基金资助项目(51876086))
详细信息
    通讯作者:

    王军锋

  • 中图分类号: O359$^{+}$.1

NUMERICAL SIMULATION ON BUBBLE RINSING BEHAVIORS UNDER ELECTRIC FIELD

  • 摘要: 利用电场控制气泡形态及运动,强化气液相间传热传质是电流体动力学的重要研究内容之一. 然而目前多数研究集中在非电场下的气泡动力学上,对于电场下的气泡行为特性及电场的作用机制仍需开展深入研究. 本研究对电场作用下单个气泡在流体中上升过程的动力学行为进行了数值模拟研究. 在建立二维模型的基础上求解电场方程与Navier-Stokes方程,并采用水平集方法捕捉了上升气泡的位置及形状. 模拟结果的准确性与有效性通过与前人实验和数值结果进行对比得到了验证. 通过改变雷诺数、邦德数和电邦德数等不同参数研究了电场下液体黏度、表面张力和电场力对气泡运动变形的影响. 计算结果表明,电场对气泡的动态特性有显著影响. 非电场情况下液体黏度和表面张力较大时气泡基本维持球状,反之气泡发生变形并逐步达到稳定状态. 此外,电场作用使气泡在初始上升阶段发生剧烈形变,随着不断上升,气泡形变程度不断减小,且气泡的上升速度和长径比均出现振荡. 垂直电场使气泡的上升速度有较大的提高,且随着电邦德数的增大,难以达到相对稳定的状态.
    Abstract: Employing an electric field to control bubble morphology and motion, and enhance heat and mass transfer between gas and liquid are one of the important research contents of electrohydrodynamics (EHD). However, most of the current researches focus on the dynamics of bubbles under non-electric fields. Further research is needed on the behaviors of bubbles and the mechanism of electric fields under electric fields. In the present study, the dynamic behaviors of a single bubble rising in a fluid under an external electric field are numerically simulated. Based on the model established on two-dimensional, the equation of electric field and Navier-Stokes are solved, and the level set method is used to accurately capture the position and morphology of the rising bubble. The accuracy and validity of the present simulation results are verified by comparing with previous experiments and numerical results. The effects of liquid viscosity, surface tension and electric field force on bubble motion and deformation under electric field are examined by employing the Reynolds ($Re$), Bond ($Bo$) and electrical bond ($Bo_{\rm e}$) numbers. The calculation results show that the electric field has a significant influence on the dynamic characteristics of the bubble. In the case of a non-electric field, the bubble basically maintains a spherical shape when the viscosity of the liquid and the surface tension are large. Instead, the bubbles deform and gradually reach a steady state. Additionally, the bubble is strongly deformed at the initial rising stage by attributing to the electric field. With the bubble further rising, the deformation weakened, and both of the bubble velocity and aspect ratio are oscillated. The effect of vertical electric field causes a greater increase in the velocity of rising bubble. As the number of $Bo_{\rm e}$ increases, the bubble has an intense oscillation, making it more difficult to achieve a relatively stable state.
  • [1] 韩宇, 刘志军, 王云峰 等. T型微通道反应器内气液两相流动机制及影响因素. 力学学报, 2019,51(2):441-449
    [1] ( Han Yu, Liu Zhijun, Wang Yunfeng , et al. Gas-liquid two-phase flow regimes and impact factors in T-junction microreactor. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):441-449 (in Chinese))
    [2] Yoon HY, Koshizuka S, Oka Y . Direct calculation of bubble growth, departure, and rise in nucleate pool boiling. International Journal of Multiphase Flow, 2001,27(2):277-298
    [3] Takahashi T, Miyahara T, Nishizaki Y . Separation of oily water by bubble column. Journal of Chemical Engineering of Japan, 1979,12(5):394-399
    [4] Al-Shamrani AA, James A, Xiao H . Separation of oil from water by dissolved air flotation. Colloids and Surfaces A (Physicochemical and Engineering Aspects), 2002,209(1):15-26
    [5] Pigeonneau F . Mass transfer of a rising bubble in molten glass with instantaneous oxidation--reduction reaction. Chemical Engineering Science, 2009,64(13):3120-3129
    [6] Galvin KP, Pratten SJ, Shankar NG , et al. Production of high internal phase emulsions using rising air bubbles. Chemical Engineering Science, 2001,56(21):6285-6293
    [7] Murray BS, Dickinson E, Wang Y . Bubble stability in the presence of oil-in-water emulsion droplets: Influence of surface shear versus dilatational rheology. Food Hydrocolloids, 2009,23(4):1198-1208
    [8] Clift R, Grace JR, Weber ME . Bubbles, Drops, Particles. Courier Corporation, 2005
    [9] Bonometti T, Magnaudet J . Transition from spherical cap to toroidal bubbles. Physics of Fluids, 2006,18(5):052102
    [10] Wang H, Zhang ZY, Yang YM , et al. Viscosity effects on the behavior of a rising bubble. Journal of Hydrodynamics, 2010,22(1):81-89
    [11] Hua J, Lou J . Numerical simulation of bubble rising in viscous liquid. Journal of Computational Physics, 2007,222(2):769-795
    [12] Tripathi MK, Sahu KC, Govindarajan R . Dynamics of an initially spherical bubble rising in quiescent liquid. Nature Communications, 2015,6:6268
    [13] 王焕然, 李彦鹏, 杨栋 . 黏性液体中单个气泡上升的形状特性. 工程热物理学报, 2009,30(9):1492-1494
    [13] ( Wang Huanran, Li Yanpeng, Yang Dong . On the shape feature of a single bubble rising in viscous liquids. Journal of Engineering Thermophysics, 2009,30(9):1492-1494 (in Chinese))
    [14] Chen L, Garimella SV, Reizes JA , et al. The development of a bubble rising in a viscous liquid. Journal of Fluid Mechanics, 1999,387:61-96
    [15] Amaya-Bower L, Lee T . Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann method. Computers and Fluids, 2010,39(7):1191-1207
    [16] Alizadeh M, Seyyedi SM, Rahni MT , et al. Three-dimensional numerical simulation of rising bubbles in the presence of cylindrical obstacles, using Lattice Boltzmann method. Journal of Molecular Liquids, 2017,236:151-161
    [17] 张洋, 陈科, 尤云祥 等. 壁面约束对裙带气泡动力学的影响. 力学学报, 2017,49(5):1050-1058
    [17] ( Zhang Yang, Chen Ke, You Yunxiang , et al. Confinement effect on the rising dynamics of a skirted bubble. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1050-1058 (in Chinese))
    [18] Moore DW . The rise of a gas bubble in a viscous liquid. Journal of Fluid Mechanics, 1959,6(1):113-130
    [19] Bhaga D, Weber ME . Bubbles in viscous liquids: Shapes, wakes and velocities. Journal of Fluid Mechanics, 2006,105(105):61-85
    [20] Marco PD, Grassi W, Memoli G . Experimental study on rising velocity of nitrogen bubbles in FC-72. International Journal of Thermal Sciences, 2003,42(5):435-446
    [21] Taylor G . Disintegration of water drops in an electric field. Proceedings A, 1964,280(1382):383-397
    [22] Garton CG, Krasucki Z . Bubbles in insulating liquids: stability in an electric field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1964,280(1381):211-226
    [23] 陈凤, 宋耀祖, 陈民 . 电场作用下的气泡受力分析. 工程热物理学报, 2005,26(S1):146-148
    [23] ( Chen Feng, Song Zuyao, Chen Min . Analysis of the electric stresses acting on a bubble in electric field. Journal of Engineering Thermophysics, 2005,26(S1):146-148 (in Chinese))
    [24] 陈凤, 宋耀祖, 陈民 . 电场作用下气泡内外的速度场分析. 热科学与技术, 2006,5(2):139-143
    [24] ( Chen Feng, Song Zuyao, Chen Min . Analysis of velocity field inside and outside bubble in DC electric field. Journal of Thermal Science and Technology, 2006,5(2):139-143 (in Chinese))
    [25] Yang Q, Li BQ, Shao J , et al. A phase field numerical study of 3D bubble rising in viscous fluids under an electric field. International Journal of Heat & Mass Transfer, 2014,78(WCE2013):820-829
    [26] Rahmat A, Tofighi N, Yildiz M . The combined effect of electric forces and confinement ratio on the bubble rising. International Journal of Heat and Fluid Flow, 2017: S0142727X16305203
    [27] Andalib S, Hokmabad BV, Esmaeilzadeh E . Study of a single coarse bubble behavior in the presence of D.C. electric field. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2013,436:604-617
    [28] Baker GR, Meiron DI, Orszag SA . Boundary integral methods for axisymmetric and three-dimensional Rayleigh-Taylor instability problems. Physica D Nonlinear Phenomena, 1984,12(1):19-31
    [29] Hua J, Stene JF, Lin P . Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. Journal of Computational Physics, 2008,227(6):3358-3382
    [30] Zhang HB, Yan YY, Zu YQ . Numerical modelling of EHD effects on heat transfer and bubble shapes of nucleate boiling. Applied Mathematical Modelling, 2010,34(3):626-638
    [31] 张洋, 陈科, 尤云祥 等. 浮力气泡对水平壁面的回弹动力学特性. 力学学报, 2019,51(5):1285-1295
    [31] ( Zhang Yang, Chen Ke, You Yunxiang , et al. Bouncing behaviors of a buoyancy-driven bubble on a horizontal solid wall. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1285-1295 (in Chinese))
    [32] Sussman M, Smereka P . Axisymmetric free boundary problems. Journal of Fluid Mechanics, 1997,341:269-294
    [33] Norman CE, Miksis MJ . Dynamics of a gas bubble rising in an inclined channel at finite Reynolds number. Physics of Fluids, 2005,17(2):821-833
    [34] M?Hlmann S, Papageorgiou DT . Buoyancy-driven motion of a two-dimensional bubble or drop through a viscous liquid in the presence of a vertical electric field. Theoretical and Computational Fluid Dynamics, 2009,23(5):375-399
    [35] Rahmat A, Tofighi N, Yildiz M . Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method. International Journal of Heat and Fluid Flow, 2016,62:313-323
    [36] Mukundakrishnan K, Quan S, Eckmann DM , et al. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2007,76(3):036308
    [37] Sherwood JD . Breakup of fluid droplets in electric and magnetic fields. Journal of Fluid Mechanics, 2006,188(188):133-146
    [38] Ohta M, Imura T, Yoshida Y , et al. A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids. International Journal of Multiphase Flow, 2005,31(2):223-237
  • 期刊类型引用(2)

    1. 周道成,刘子钰,张洪福. 尾流干扰下桥梁斜拉索风荷载的吹气控制. 黑龙江科技大学学报. 2024(03): 409-415 . 百度学术
    2. 邹琳,张毓辰,左红成,苗亚博,徐汉斌. 定常吸吹气作用下波浪圆柱主动减阻机制. 河海大学学报(自然科学版). 2024(06): 81-89 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1960
  • HTML全文浏览量:  400
  • PDF下载量:  169
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-07-17
  • 刊出日期:  2020-02-09

目录

    /

    返回文章
    返回