1 | MK. The concept of FGM. Ceramic Transactions on Functional Gradient Materials, 1993,34:3-10 | 2 | Zhu J, Lai Z, Yin Z, et al. Fabrication of ZrO$_2$--NiCr functionally graded material by powder metallurgy. Materials Chemistry and Physics, 2001,68(1):130-135 | 3 | 许新, 李世荣 . 功能梯度材料微梁的热弹性阻尼研究. 力学学报, 2017,49(2):308-316 | 3 | ( Xu Xin, Li Shirong, Analysis of thermoelastic damping for functionally graded material micro-beam. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):308-316 (in Chinese)) | 4 | Tian J, Zhang Z, Hua H. Free vibration analysis of rotating functionally graded double-tapered beam including porosities. International Journal of Mechanical Sciences, 2019,150:526-538 | 5 | 陈俊祥, 于继东, 耿华运 等. 多孔材料的温度和压强计算. 物理学报, 2017,66(5):248-254 | 5 | ( Chen Junxiang, Yu Jidong, Geng Hua-Yun, et al. Temperature and pressure calculation of porous materials. Acta Physica Sinica, 2017,66(5):248-254 (in Chinese)) | 6 | Nikbakht S, Kamarian S, Shakeri M. A review on optimization of composite structures Part II: Functionally graded materials. Composite Structures, 2019,214:83-102 | 7 | Correia VMF, Madeira JFA, Araújo AL, et al. Multiobjective optimization of functionally graded material plates with thermo-mechanical loading. Composite Structures, 2019,207:845-857 | 8 | Al-Shujairi M, Mollamahmutoglu ?. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect. Composite Structures, 2018,201:1018-1030 | 9 | Tomar SS, Talha M. Influence of material uncertainties on vibration and bending behaviour of skewed sandwich FGM plates. Composites Part B$:$ Engineering, 2019,163:779-793 | 10 | Hao YX, Cao Z, Zhang W, et al. Stability analysis for geometric nonlinear functionally graded sandwich shallow shell using a new developed displacement field. Composite Structures, 2019,210:202-216 | 11 | Loja MAR,. On the use of particle swarm optimization to maximize bending stiffness of functionally graded structures. Journal of Symbolic Computation, 2014, 61-62:12-30 | 12 | 陈玉丽, 马勇, 潘飞 等. 多尺度复合材料力学研究进展. 固体力学学报, 2018,39(1):1-68 | 12 | ( Chen Yuli, Ma Yong, Pan Fei, et al. Research progress in multi-scale mechanics of composite materialsv. Journal of Solid Mechanics, 2018,39(1):1-68 (in Chinese)) | 13 | Mohammad Abadi M, Daneshmehr AR. An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler-Bernoulli and Timoshenko beams. International Journal of Engineering Science, 2014,75:40-53 | 14 | Lam DCC, Yang F, Chong ACM, et al. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 2003,51(8):1477-1508 | 15 | 杨旭, 周亚荣, 陈玲玲 等. 基于广义应变梯度理论的纳米梁挠曲电效应研究. 固体力学学报, 2019,40(1):21-29 | 15 | ( Yang Xu, Zhou Yarong, Chen Lingling, et al. The flexoelectric response of nanobeam based on the general strain gradient elasticity theory. Journal of Solid Mechanics, 2019,40(1):21-29 (in Chinese)) | 16 | Ghadiri M, Shafiei N. Vibration analysis of rotating functionally gradedTimoshenko microbeam based on modified couple stress theory under different temperature distributions. Acta Astronautica, 2016,121:221-240 | 17 | Mirjavadi SS, Matin A, Shafiei N, et al. Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. Journal of Thermal Stresses, 2017,40(10):1201-1214 | 18 | Ansari R, Gholami R, Sahmani S. Free Vibration of size-dependent functionally graded microbeams based on the strain gradient reddy beam theory. International Journal for Computational Methods in Engineering Science and Mechanics, 2014,15(5):401-412 | 19 | Karparvarfard SMH, Asghari M, Vatankhah R. A geometrically nonlinear beam model based on the second strain gradient theory. International Journal of Engineering Science, 2015,91:63-75 | 20 | 高晨彤, 黎亮, 章定国 等. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真. 力学学报, 2018,50(3):654-666 | 20 | ( Gao Chentong, Li Liang, Zhang Dingguo, et al. Dynamic modeling and simulation of rotating FGM tapered beams with shear effffect. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):654-666 (in Chinese)) | 21 | Li L, Zhang D, Guo Y. Dynamic modeling and analysis of a rotating flexible beam with smart ACLD treatment. Composites Part B$:$ Engineering, 2017,131:221-236 | 22 | 刘锦阳, 洪嘉振 . 刚-柔耦合动力学系统的建模理论与研究. 力学学报, 2002,34(3):408-415 | 22 | ( Liu Jinyang, Hong Jiazhen, Study on dynamic modeling theory of rigid-flexible coupling systems. Chinese Journal of Theoretical and Applied Mechanics, 2002,34(3):408-415 (in Chinese)) | 23 | 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147 | 23 | ( Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese)) | 24 | 李容容, 王忠民, 姚晓莎 . 旋转 FGM 圆环形截面柔性梁的振动特性. 应用力学学报, 2017,34(3):417-423 | 24 | ( Li Rongrong, Wang Zhongmin, Yao Xiaosha, Vibration characteristics of rotating flexible ring beam made of functionally graded material. Journal of Applied Mechanics, 2017,34(3):417-423 (in Chinese)) | 25 | Li L, Chen YZ, Zhang DG, et al. Large deformation and vibration analysis of microbeams by absolute nodal coordinate formulation. International Journal of Structural Stability and Dynamics, 2019,19(4):1-20 | 26 | Li L, Zhang DG, Zhu WD. Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect. Journal of Sound and Vibration, 2014,333(5):1526-1541 | 27 | Fang JS, Zhou D, Dong Y. Three-dimensional vibration of rotating functionally graded beams. Journal of Vibration and Control, 2017,24(15):3292-3306 | 28 | Chen YZ, Zhang DG, Li L. Dynamics analysis of a rotating plate with a setting angle by using the absolute nodal coordinate formulation. European Journal of Mechanics - A/Solids, 2019,74:257-271 | 29 | Zhao G, Wu Z. Coupling vibration analysis of rotating three-dimensional cantilever beam. Computers & Structures, 2017,179:64-74 | 30 | 章定国, 吴胜宝, 康新 . 考虑尺度效应的微梁刚柔耦合动力学分析. 固体力学学报, 2010,31(1):32-39 | 30 | ( Zhang Dingguo, Wu Shengbao, Kang Xin, Rigid-flexible coupling dynamic analysis of a micro beam considering size effect. Journal of Solid Mechanics, 2010,31(1):32-39 (in Chinese)) | 31 | 吴胜宝, 章定国, 康新 . 刚体--微梁系统的动力学特性. 机械工程学报, 2010,46(3):76-82 | 31 | ( Wu Shengbao, Zhang Dingguo, Kang Xin, Dynamic properties of hub-microbeam system. Journal of Mechanical Engineering, 2010,46(3):76-82 (in Chinese)) | 32 | Wattanasakulpong N, Chaikittiratana A. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica, 2015,50(5):1331-1342 | 33 | Yang F, Chong ACM, Lam DCC, et al. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002,39(10):2731-2743 | 34 | Asghari M, Kahrobaiyan MH, Nikfar M, et al. A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mechanica, 2012,223(6):1233-1249 | 35 | 陈思佳, 章定国, 洪嘉振 . 大变形旋转柔性梁的一种高次刚柔耦合动力学模型. 力学学报, 2013,45(2):251-256 | 35 | ( Chen Sijia, Zhang Dingguo, Hong Jiazhen, A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(2):251-256 (in Chinese)) | 36 | 李彬, 刘锦阳 . 大变形柔性梁系统的绝对坐标方法. 上海交通大学学报, 2005,39(5):827-831 | 36 | ( Li Bin, Liu Jingyang, Application of absolute nodal coordination formulation in flexible beams with large deformation. Journal of Shanghai Jiaotong University, 2005,39(5):827-831 (in Chinese)) | 37 | Kim H, Hee Yoo H, Chung J. Dynamic model for free vibration and response analysis of rotating beams. Journal of Sound and Vibration, 2013,332(22):5917-5928 | 38 | Fang J, Gu JP, Wang HW. Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modifified couple stress theory. International Journal of Mechanical Sciences, 2018,136:188-199 |
|