EI、Scopus 收录
中文核心期刊

考虑尺度效应的夹层楔形多孔梁动力学分析

蒲刚, 章定国, 黎亮

蒲刚, 章定国, 黎亮. 考虑尺度效应的夹层楔形多孔梁动力学分析[J]. 力学学报, 2019, 51(6): 1882-1896. DOI: 10.6052/0459-1879-19-164
引用本文: 蒲刚, 章定国, 黎亮. 考虑尺度效应的夹层楔形多孔梁动力学分析[J]. 力学学报, 2019, 51(6): 1882-1896. DOI: 10.6052/0459-1879-19-164
Pu Gang, Zhang Dingguo, Li Liang. DYNAMIC ANALYSIS OF SANDWICH TAPERED POROUS MICRO-BEAMS CONSIDERING SIZE EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1882-1896. DOI: 10.6052/0459-1879-19-164
Citation: Pu Gang, Zhang Dingguo, Li Liang. DYNAMIC ANALYSIS OF SANDWICH TAPERED POROUS MICRO-BEAMS CONSIDERING SIZE EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1882-1896. DOI: 10.6052/0459-1879-19-164
蒲刚, 章定国, 黎亮. 考虑尺度效应的夹层楔形多孔梁动力学分析[J]. 力学学报, 2019, 51(6): 1882-1896. CSTR: 32045.14.0459-1879-19-164
引用本文: 蒲刚, 章定国, 黎亮. 考虑尺度效应的夹层楔形多孔梁动力学分析[J]. 力学学报, 2019, 51(6): 1882-1896. CSTR: 32045.14.0459-1879-19-164
Pu Gang, Zhang Dingguo, Li Liang. DYNAMIC ANALYSIS OF SANDWICH TAPERED POROUS MICRO-BEAMS CONSIDERING SIZE EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1882-1896. CSTR: 32045.14.0459-1879-19-164
Citation: Pu Gang, Zhang Dingguo, Li Liang. DYNAMIC ANALYSIS OF SANDWICH TAPERED POROUS MICRO-BEAMS CONSIDERING SIZE EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1882-1896. CSTR: 32045.14.0459-1879-19-164

考虑尺度效应的夹层楔形多孔梁动力学分析

基金项目: 1) 国家自然科学基金项目(11772158);1) 国家自然科学基金项目(11502113);中央高校基本科研业务费专项资金资助(30917011103)
详细信息
    通讯作者:

    章定国

  • 中图分类号: O313

DYNAMIC ANALYSIS OF SANDWICH TAPERED POROUS MICRO-BEAMS CONSIDERING SIZE EFFECT

  • 摘要: 基于修正偶应力理论, 研究了具有大范围旋转中心刚体-功能梯度夹层Euler-Bernoulli楔形多孔柔性微梁系统的动力学特性.楔形梁是中间层为不完全功能梯度层, 两表层为均质材料的功能梯度夹层结构, 它可以减小传统夹层结构由于层与层之间材料属性的不同导致脱粘类型损伤的影响.采用假设模态法描述变形, 考虑具有捕捉动力刚化效应的非线性耦合项, 计及von Kármán几何非线性应变, 运用第二类Lagrange方程, 导出了适用于较大变形的高次刚柔耦合动力学方程.对在平面内做大范围运动的中心刚体-功能梯度夹层Euler-Bernoulli楔形多孔微梁的动力学特性进行了详细研究.研究表明: 功能梯度夹层楔形梁表层结构高度、旋转角速度、功能梯度幂指数、尺度参数、孔隙度以及各层结构的体积分数对系统的动力学特性都有很大的影响; 功能梯度夹层楔形梁综合了功能梯度直梁和楔形梁的特性, 其相对于功能梯度直梁的固有频率增大, 同时使得孔隙度对结构固有频率变化趋势的影响不再与功能梯度直梁相同; 由于柔性梁变形能中具有横向与轴向的耦合势能, 系统在稳态下的平衡位置发生了迁移现象; 系统随着尺度参数的变化发生了频率转向与振型转换.
    Abstract: Based on the modified couple stress theory, a size-dependent dynamic model of large overall rotating hub-flexible sandwich tapered Euler-Bernoulli micro-beams made from functionally graded materials with porosities is developed to study their dynamic characteristics. The functionally graded sandwich tapered micro-beams are composed of a core with inperfect functionally graded materials sandwiched between two homogeneous face sheets, which can decline the influence of the traditional sandwich structure debonding damage caused by the mismatch of stiffness properties between their core and face sheets. The high-order rigid-flexible coupled dynamic equations of the system applied to large deformation are derived by considering the von Kármán geometric nonlinear strain and adopting Lagrange's equation of the second kind. The method of assumed modes is used to describe the chordwise and axial deformations of micro-beams. The dynamic stiffening effect is captured the nonlinear coupling term obtained by longitudinal shortening caused by the transverse bending deformation of the micro-beams. Then, under the effects of different parameters, such as the width of face sheets of the tapered micro-beams, rotating angular velocity, material gradient index, size-dependency, porosities and volume fractions of each layer structure, the dynamic characteristics of functionally graded sandwich micro-beams in the plane are investigated. The functionally graded sandwich tapered micro-beams combine the characteristics of the functionally graded rectangular micro-beams and the tapered micro-beams. Compared with the functionally graded rectangular micro-beams, these characteristics make the natural frequency of the functionally graded sandwich tapered micro-beams increase and lead to different influences of porosities on the natural frequencies of the structures. Moreover, since the coupling potential energy of the chordwise and axial motions is involved in the strain energy of the flexible micro-beams, the equilibrium position of the system migrates in the steady state. It is observed that interesting frequency veering and mode shift phenomena of the system are observed when the size-dependency changes.
  • 1 MK. The concept of FGM. Ceramic Transactions on Functional Gradient Materials, 1993,34:3-10
    2 Zhu J, Lai Z, Yin Z, et al. Fabrication of ZrO$_2$--NiCr functionally graded material by powder metallurgy. Materials Chemistry and Physics, 2001,68(1):130-135
    3 许新, 李世荣 . 功能梯度材料微梁的热弹性阻尼研究. 力学学报, 2017,49(2):308-316
    3 ( Xu Xin, Li Shirong, Analysis of thermoelastic damping for functionally graded material micro-beam. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):308-316 (in Chinese))
    4 Tian J, Zhang Z, Hua H. Free vibration analysis of rotating functionally graded double-tapered beam including porosities. International Journal of Mechanical Sciences, 2019,150:526-538
    5 陈俊祥, 于继东, 耿华运 等. 多孔材料的温度和压强计算. 物理学报, 2017,66(5):248-254
    5 ( Chen Junxiang, Yu Jidong, Geng Hua-Yun, et al. Temperature and pressure calculation of porous materials. Acta Physica Sinica, 2017,66(5):248-254 (in Chinese))
    6 Nikbakht S, Kamarian S, Shakeri M. A review on optimization of composite structures Part II: Functionally graded materials. Composite Structures, 2019,214:83-102
    7 Correia VMF, Madeira JFA, Araújo AL, et al. Multiobjective optimization of functionally graded material plates with thermo-mechanical loading. Composite Structures, 2019,207:845-857
    8 Al-Shujairi M, Mollamahmutoglu ?. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect. Composite Structures, 2018,201:1018-1030
    9 Tomar SS, Talha M. Influence of material uncertainties on vibration and bending behaviour of skewed sandwich FGM plates. Composites Part B$:$ Engineering, 2019,163:779-793
    10 Hao YX, Cao Z, Zhang W, et al. Stability analysis for geometric nonlinear functionally graded sandwich shallow shell using a new developed displacement field. Composite Structures, 2019,210:202-216
    11 Loja MAR,. On the use of particle swarm optimization to maximize bending stiffness of functionally graded structures. Journal of Symbolic Computation, 2014, 61-62:12-30
    12 陈玉丽, 马勇, 潘飞 等. 多尺度复合材料力学研究进展. 固体力学学报, 2018,39(1):1-68
    12 ( Chen Yuli, Ma Yong, Pan Fei, et al. Research progress in multi-scale mechanics of composite materialsv. Journal of Solid Mechanics, 2018,39(1):1-68 (in Chinese))
    13 Mohammad Abadi M, Daneshmehr AR. An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler-Bernoulli and Timoshenko beams. International Journal of Engineering Science, 2014,75:40-53
    14 Lam DCC, Yang F, Chong ACM, et al. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 2003,51(8):1477-1508
    15 杨旭, 周亚荣, 陈玲玲 等. 基于广义应变梯度理论的纳米梁挠曲电效应研究. 固体力学学报, 2019,40(1):21-29
    15 ( Yang Xu, Zhou Yarong, Chen Lingling, et al. The flexoelectric response of nanobeam based on the general strain gradient elasticity theory. Journal of Solid Mechanics, 2019,40(1):21-29 (in Chinese))
    16 Ghadiri M, Shafiei N. Vibration analysis of rotating functionally gradedTimoshenko microbeam based on modified couple stress theory under different temperature distributions. Acta Astronautica, 2016,121:221-240
    17 Mirjavadi SS, Matin A, Shafiei N, et al. Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. Journal of Thermal Stresses, 2017,40(10):1201-1214
    18 Ansari R, Gholami R, Sahmani S. Free Vibration of size-dependent functionally graded microbeams based on the strain gradient reddy beam theory. International Journal for Computational Methods in Engineering Science and Mechanics, 2014,15(5):401-412
    19 Karparvarfard SMH, Asghari M, Vatankhah R. A geometrically nonlinear beam model based on the second strain gradient theory. International Journal of Engineering Science, 2015,91:63-75
    20 高晨彤, 黎亮, 章定国 等. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真. 力学学报, 2018,50(3):654-666
    20 ( Gao Chentong, Li Liang, Zhang Dingguo, et al. Dynamic modeling and simulation of rotating FGM tapered beams with shear effffect. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):654-666 (in Chinese))
    21 Li L, Zhang D, Guo Y. Dynamic modeling and analysis of a rotating flexible beam with smart ACLD treatment. Composites Part B$:$ Engineering, 2017,131:221-236
    22 刘锦阳, 洪嘉振 . 刚-柔耦合动力学系统的建模理论与研究. 力学学报, 2002,34(3):408-415
    22 ( Liu Jinyang, Hong Jiazhen, Study on dynamic modeling theory of rigid-flexible coupling systems. Chinese Journal of Theoretical and Applied Mechanics, 2002,34(3):408-415 (in Chinese))
    23 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147
    23 ( Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese))
    24 李容容, 王忠民, 姚晓莎 . 旋转 FGM 圆环形截面柔性梁的振动特性. 应用力学学报, 2017,34(3):417-423
    24 ( Li Rongrong, Wang Zhongmin, Yao Xiaosha, Vibration characteristics of rotating flexible ring beam made of functionally graded material. Journal of Applied Mechanics, 2017,34(3):417-423 (in Chinese))
    25 Li L, Chen YZ, Zhang DG, et al. Large deformation and vibration analysis of microbeams by absolute nodal coordinate formulation. International Journal of Structural Stability and Dynamics, 2019,19(4):1-20
    26 Li L, Zhang DG, Zhu WD. Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect. Journal of Sound and Vibration, 2014,333(5):1526-1541
    27 Fang JS, Zhou D, Dong Y. Three-dimensional vibration of rotating functionally graded beams. Journal of Vibration and Control, 2017,24(15):3292-3306
    28 Chen YZ, Zhang DG, Li L. Dynamics analysis of a rotating plate with a setting angle by using the absolute nodal coordinate formulation. European Journal of Mechanics - A/Solids, 2019,74:257-271
    29 Zhao G, Wu Z. Coupling vibration analysis of rotating three-dimensional cantilever beam. Computers & Structures, 2017,179:64-74
    30 章定国, 吴胜宝, 康新 . 考虑尺度效应的微梁刚柔耦合动力学分析. 固体力学学报, 2010,31(1):32-39
    30 ( Zhang Dingguo, Wu Shengbao, Kang Xin, Rigid-flexible coupling dynamic analysis of a micro beam considering size effect. Journal of Solid Mechanics, 2010,31(1):32-39 (in Chinese))
    31 吴胜宝, 章定国, 康新 . 刚体--微梁系统的动力学特性. 机械工程学报, 2010,46(3):76-82
    31 ( Wu Shengbao, Zhang Dingguo, Kang Xin, Dynamic properties of hub-microbeam system. Journal of Mechanical Engineering, 2010,46(3):76-82 (in Chinese))
    32 Wattanasakulpong N, Chaikittiratana A. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica, 2015,50(5):1331-1342
    33 Yang F, Chong ACM, Lam DCC, et al. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002,39(10):2731-2743
    34 Asghari M, Kahrobaiyan MH, Nikfar M, et al. A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mechanica, 2012,223(6):1233-1249
    35 陈思佳, 章定国, 洪嘉振 . 大变形旋转柔性梁的一种高次刚柔耦合动力学模型. 力学学报, 2013,45(2):251-256
    35 ( Chen Sijia, Zhang Dingguo, Hong Jiazhen, A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(2):251-256 (in Chinese))
    36 李彬, 刘锦阳 . 大变形柔性梁系统的绝对坐标方法. 上海交通大学学报, 2005,39(5):827-831
    36 ( Li Bin, Liu Jingyang, Application of absolute nodal coordination formulation in flexible beams with large deformation. Journal of Shanghai Jiaotong University, 2005,39(5):827-831 (in Chinese))
    37 Kim H, Hee Yoo H, Chung J. Dynamic model for free vibration and response analysis of rotating beams. Journal of Sound and Vibration, 2013,332(22):5917-5928
    38 Fang J, Gu JP, Wang HW. Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modifified couple stress theory. International Journal of Mechanical Sciences, 2018,136:188-199
  • 期刊类型引用(8)

    1. 张晶,张晨星,王惠,梁欣欣,吴钦. 非均匀伴流中复合材料螺旋桨非定常空化流固耦合研究. 船舶力学. 2024(03): 341-353 . 百度学术
    2. 张丹丹,张晶,刘影,吴钦,黄彪,王国玉. 复合材料螺旋桨敞水性能与结构特性研究. 船舶力学. 2023(02): 173-184 . 百度学术
    3. 张后胜,黄彪,吴钦,姚志峰,傅晓英. 复合材料水翼水动力响应数值模拟研究. 水动力学研究与进展A辑. 2022(02): 159-171 . 百度学术
    4. 刘昊,瞿叶高,孟光. 剪切流作用下层合梁非线性振动特性研究. 力学学报. 2022(06): 1669-1679 . 本站查看
    5. 许灿,朱平,刘钊,陶威. 平纹机织碳纤维复合材料的多尺度随机力学性能预测研究. 力学学报. 2020(03): 763-773 . 本站查看
    6. 曹明月,张启,吴建国,葛敬冉,梁军. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究. 力学学报. 2020(04): 1095-1105 . 本站查看
    7. 李正,杨庆生,尚军军,刘夏. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能. 力学学报. 2020(06): 1700-1708 . 本站查看
    8. 李则霖,李晖,王东升,任朝晖,祖旭东,周晋,官忠伟,王相平. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 力学学报. 2020(06): 1690-1699 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  1384
  • HTML全文浏览量:  200
  • PDF下载量:  216
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-06-24
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回