EI、Scopus 收录
中文核心期刊

基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法

张洁皓, 段玥晨, 侯玉亮, 铁瑛, 李成

张洁皓, 段玥晨, 侯玉亮, 铁瑛, 李成. 基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法[J]. 力学学报, 2019, 51(5): 1411-1423. DOI: 10.6052/0459-1879-19-133
引用本文: 张洁皓, 段玥晨, 侯玉亮, 铁瑛, 李成. 基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法[J]. 力学学报, 2019, 51(5): 1411-1423. DOI: 10.6052/0459-1879-19-133
Zhang Jiehao, Duan Yuechen, Hou Yuliang, Tie Ying, Li Cheng. MULTI-SCALE METHOD OF PLAIN WOVEN COMPOSITES SUBJECTED TO LOW VELOCITY IMPACT BASED ON ASYMPTOTIC HOMOGENIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1411-1423. DOI: 10.6052/0459-1879-19-133
Citation: Zhang Jiehao, Duan Yuechen, Hou Yuliang, Tie Ying, Li Cheng. MULTI-SCALE METHOD OF PLAIN WOVEN COMPOSITES SUBJECTED TO LOW VELOCITY IMPACT BASED ON ASYMPTOTIC HOMOGENIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1411-1423. DOI: 10.6052/0459-1879-19-133
张洁皓, 段玥晨, 侯玉亮, 铁瑛, 李成. 基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法[J]. 力学学报, 2019, 51(5): 1411-1423. CSTR: 32045.14.0459-1879-19-133
引用本文: 张洁皓, 段玥晨, 侯玉亮, 铁瑛, 李成. 基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法[J]. 力学学报, 2019, 51(5): 1411-1423. CSTR: 32045.14.0459-1879-19-133
Zhang Jiehao, Duan Yuechen, Hou Yuliang, Tie Ying, Li Cheng. MULTI-SCALE METHOD OF PLAIN WOVEN COMPOSITES SUBJECTED TO LOW VELOCITY IMPACT BASED ON ASYMPTOTIC HOMOGENIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1411-1423. CSTR: 32045.14.0459-1879-19-133
Citation: Zhang Jiehao, Duan Yuechen, Hou Yuliang, Tie Ying, Li Cheng. MULTI-SCALE METHOD OF PLAIN WOVEN COMPOSITES SUBJECTED TO LOW VELOCITY IMPACT BASED ON ASYMPTOTIC HOMOGENIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1411-1423. CSTR: 32045.14.0459-1879-19-133

基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法

基金项目: 1) 国家自然科学基金资助项目(U1333201);国家自然科学基金资助项目(U1833116);国家自然科学基金资助项目(11402234)
详细信息
    通讯作者:

    李成

  • 中图分类号: TB332

MULTI-SCALE METHOD OF PLAIN WOVEN COMPOSITES SUBJECTED TO LOW VELOCITY IMPACT BASED ON ASYMPTOTIC HOMOGENIZATION

  • 摘要: 针对平纹编织复合材料低速冲击响应和损伤问题,提出了一种多尺度分析方法. 首先, 建立微观尺度单胞模型,引入周期性边界条件,采用最大主应力失效准则和直接刚度退化模型表征纤维丝和基体的损伤起始与演化,预测了纤维束的弹性性能和强度性能. 其次,将这些性能参数代入介观尺度单胞模型,基于Hashin和Hou的混合失效准则以及连续介质损伤模型对介观尺度单胞进行6种边界条件下的渐进损伤模拟.然后采用渐进均匀化方法,以介观尺度单胞为媒介预测了0$^\circ$和90$^\circ$子胞的性能参数,并建立平纹编织复合材料的子胞模型,进而扩展成为材料的宏观尺度低速冲击模型. 在此基础上,研究了平纹编织复合材料低速冲击下的力学响应与损伤特征.结果表明:宏观冲击仿真和试验吻合较好, 验证了多尺度方法的正确性;最大接触力、材料吸能和分层面积均随冲击能量的增大而增大,分层损伤轮廓逐渐从椭圆形向圆形转化;基体拉伸和压缩损伤的长轴方向分别与子胞材料主方向正交和一致,损伤面积前者远大于后者.
    Abstract: A multi-scale approach was presented to analyze low velocity impact response and damage of plain woven composites. Firstly, by using the maximum principal stress failure criterion and direct stiffness degradation model to characterize the damage initiation and damage evolution of fiber and matrix, micro-scale unit cell under the periodical boundary condition was established to predict the elastic and strength properties of fiber bundles, which were substituted into the meso-scale unit cell. After that, the progressive damage simulation of meso-scale unit cell under six boundary conditions was carried out based on the mixed failure criteria of Hashin and Hou, and continuum damage model. Then the effective properties of 0$^\circ$and 90$^\circ$subcell were predicted based on the asymptotic homogenization method by using meso-scale unit cell as the media, and the subcell model of plain woven composites was established. The subcell model was then extended into a macro-scale low velocity impact model. Based on the above methods, the mechanical response and damage characteristics of plain woven composites under low velocity impact were studied. The results show that macro-scale impact simulation results agree well with experimental results, which verifies the correctness of multi-scale approach. The maximum contact force, absorbed energy and delamination area increase with the increasing impact energy, and the delamination damage morphology gradually transforms from ellipse to circle.The long axis direction of matrix tensile damage and matrix compressive damage are orthogonal and consistent with the material principal direction of subcell respectively, and the damage area of the former is much larger than that of the latter.
  • [1] Zhao ZQ, Dang HY, Zhang C , et al. A multi-scale modeling framework for impact damage simulation of triaxially braided composites. Composites Part A : Applied Science and Manufacturing, 2018,110:113-125
    [2] 马丕波, 蒋高明, 高哲 等. 纺织结构复合材料冲击拉伸研究进展. 力学进展, 2013,43(3):329-357
    [2] ( Ma Pibo, Jiang Gaoming, Gao Zhe , et al. Advances in impact tensile properties of 3-D textile structural composites. Advances in Mechanics, 2013,43(3):329-357(in Chinese))
    [3] 郭洪宝, 王波, 贾普荣 等. 平纹编织陶瓷基复合材料面内剪切细观损伤行为研究. 力学学报, 2016,48(2):361-368
    [3] ( Guo Hongbao, Wang Bo, Jia Purong , et al. Mesoscopic danage behaviors of plain woven ceramic composite under in-plane shear loading. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(2):361-368(in Chinese))
    [4] Zhou Y, Lu ZX, Yang ZY . Progressive damage analysis and strength prediction of 2D plain weave composites. Composites Part B : Engineering, 2013,47:220-229
    [5] 郭洪宝, 贾普荣, 王波 等. 基于迟滞行为的2D-SiC/SiC复合材料组份力学性能分析. 力学学报, 2015,47(2):260-269
    [5] ( Guo Hongbao , JiaPurong, Wang Bo, et al. Study on constituent properties of a 2D-SiC/SiC composite by hysteresis measurments. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(2):260-269(in Chinese))
    [6] 杨成鹏, 矫桂琼, 王波 等. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度. 力学学报, 2011,43(2):330-337
    [6] ( Yang Chengpeng, Jiao Guiqiong, Wang Bo , et al. Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite. Chinese Journal of Theoretical and Applied Mechanics, 2011,42(2):330-337(in Chinese))
    [7] Bandaru AK, Chavan VV, Ahmad S , et al. Low velocity impact response of 2d and 3d kevlar/polypropylene composites. International Journal of Impact Engineering, 2016,93:136-143.
    [8] Grasso M, Xu YG, Ramji A , et al. Low-velocity impact behaviour of woven laminate plates with fire retardant resin, Composites Part B: Engineering, 2019,171:1-8
    [9] Wang Y, Chen XG, Young R , et al. Finite element analysis of effect of inter-yarn friction on ballistic impact response of woven fabrics. Composite Structures, 2016,135:8-16
    [10] Palta E, Fang H . On a multi-scale finite element model for evaluating ballistic performance of multi-ply woven fabrics. Composite Structures, 2019,207:488-508
    [11] Carpenter AJ, Anderson CE, Chocron S . Mesoscale simulations of high-velocity impact on plain-weave and 3-D weave S-2 glass targets. Procedia Engineering, 2015,103:60-67
    [12] 李裕春, 徐全军, 刘强 等. 平头弹冲击作用下平纹织物的动态响应分析. 材料科学与工程学报, 2010,28(3):379-384
    [12] ( Li Yuchun, Xu Quanjun , Liu qiang, et al. Dynamic response of plain-woven fabricsubjected to ballistic impact of a flat-nosed projectile. Journal of Materials Science & Engineering, 2010,28(3):379-384(in Chinese))
    [13] Cousigné O, Moncayo D, Coutellier D , et al. Numerical modeling of nonlinearity, plasticity and damage in CFRP-woven composites for crash simulations. Composite Structures, 2014,115:75-88
    [14] Yang B, Wang ZQ, Zhou LM , et al. Experimental and numerical investigation of interply hybrid composites based on woven fabricsand PCBT resin subjected to low-velocity impact. Composite Structures, 2015,132:464-476
    [15] Kinvi-Dossou G, Matadi BR, Bonfoh N , et al. A numerical homogenization of E-glass/acrylic woven composite laminates: Application to low velocity impact. Composite Structures, 2018,200:540-554
    [16] 杨扬, 徐绯, 张岳青 等. 平纹编织C/SiC复合材料低速冲击数值模拟. 爆炸与冲击, 2015,35(1):22-28
    [16] ( Yang Yang, Xu Fei, Zhang Yueqing , et al. Numerical simulation on low-speed impact responseof 2D plain-woven C/SiC composite. Explosion and Shock Waves, 2015,35(1):22-28(in Chinese))
    [17] Wang H, Wang ZW . Quantification of effects of stochastic feature parameters of yarn on elastic properties of plain-weave composite---Part 1: Theoretical modeling. Composites Part A : Applied Science and Manufacturing, 2015,78:84-94
    [18] Wang H, Wang ZW . Quantification of effects of stochastic feature parameters of yarn on elastic properties of plain-weave composite---Part 2: Statistical predictions vs. mechanical experiments. Composites Part A : Applied Science and Manufacturing, 2016,84:147-157
    [19] 费庆国, 姜东, 陈素芳 等. 高温下编织复合材料热相关参数识别方法研究. 力学学报, 2018,50(3):53-63
    [19] ( Fei Qingguo, Jiang Dong, Chen Sufang , et al. Thermal-related parameter identification of braided composites at high temperature. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):53-63(in Chinese))
    [20] Dixit A, Mali HS, Misra RK . Unit cell model of woven fabric textile composite for multiscale analysis. Procedia Engineering, 2013,68:352-358
    [21] 王新峰 . 机织复合材料多尺度渐进损伤研究. [博士论文]. 南京:南京航空航天大学, 2007
    [21] ( Wang Xinfeng . Multi-scale analyses of damage evolution in woven composite materials. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese))
    [22] Xia ZH, Zhou CW, Yong QL , et al. On selection of repeated unitcell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. International Journal of Solids and Structures, 2006,43(2):266-278.
    [23] Wang C, Zhong YC, Adaikalaraj PF , et al. Strength prediction for bi-axial braided composites by a multi-scale modelling approach. Journal of Materials Science, 2016,51(12):6002-6018
    [24] Hashin Z . Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980,47(2):329-334
    [25] Hou JP, Petrinic N, Ruiz C , et al. Prediction of impact damage incomposite plates. Composites Science and Technology, 2000,60(2):273-281
    [26] Tie Y, Hou YL, LI C , et al. An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches. Composite Structures, 2018,190:179-188
    [27] 孙振辉, 铁瑛, 侯玉亮 等. 相对冲击位置和补片层数对胶接修理CFRP复合材料层合板抗冲击性能的影响. 复合材料学报, 2019,36(5):1114-1123
    [27] ( Sun Zhenhui, Tie Ying, Hou Yuliang , et al. Effect of relative impact location and patch layer number on impact resistance of adhesive repaired CFRP composite laminates. Acta Materiae Compositae Sinica, 2019,36(5):1114-1123(in Chinese))
    [28] Mulay SS , Udhayaraman R. On the constitutive modelling and damage behaviour of plain woven textile composite. International Journal of Solids and Structures, 2019, 156- 157:73-86
    [29] Matadi BR, Coulibaly M, Khabouchi A , et al. Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: low velocity impact response at various temperatures. Composite Structures, 2017,160:939-951
    [30] Chamis CC . Mechanics of composites materials: past,present and future. Journal of Composites Technology and Research, 1989,11(1):3-14
  • 期刊类型引用(15)

    1. 孙思远,盛亚鹏,段玥晨,齐佳旗. 拓扑优化体心立方结构平压性能研究. 复合材料科学与工程. 2025(03): 7-14 . 百度学术
    2. 冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 . 本站查看
    3. 刘安宇,刘斌,雷加静,秦恺,吴卫国. 面向一体化设计的船用碳玻混杂复合材料帽型加筋板结构多尺度分析. 中国舰船研究. 2024(06): 257-267 . 百度学术
    4. 刘乐,时建纬,杨晶晶,李成. 碳纤维平纹与斜纹编织复合材料低速冲击多尺度分析与对比. 复合材料科学与工程. 2023(01): 16-25+106 . 百度学术
    5. 冯雨春,张盛,高希光. 考虑分层损伤的平纹编织SiC/SiC弯曲失效模拟. 推进技术. 2023(04): 246-254 . 百度学术
    6. 程振锋,贾康康,李成. 碳纤维平纹机织复合材料低速冲击损伤的非线性超声检测研究. 复合材料科学与工程. 2023(05): 94-101 . 百度学术
    7. 徐姚兴,韦尧兵,刘俭辉. GFRP层合板近缘和边缘低速冲击损伤数值模拟研究. 兰州理工大学学报. 2022(01): 30-38 . 百度学术
    8. 盛亚鹏,段玥晨,谢鑫. 多孔格栅均匀化模型平压仿真分析. 计算力学学报. 2022(01): 92-98 . 百度学术
    9. 曹勇,张超. 薄层复合材料冲击损伤行为研究进展. 航空学报. 2022(06): 154-170 . 百度学术
    10. 金其多,任毅如,胡绚,蒋宏勇. 含黏弹性夹芯FG-GRC后屈曲梁的低速冲击响应. 力学学报. 2021(01): 194-204 . 本站查看
    11. 张晨曦,娄源峰,铁瑛,丛世凡,李要磊. 基于渐进均匀化多尺度方法的CFR平纹机织材料冲击后压缩损伤研究. 复合材料科学与工程. 2021(10): 5-12 . 百度学术
    12. 王帅,徐绯,代震,刘小川,李肖成,杨磊峰,惠旭龙. 结构冲击畸变问题的直接相似方法研究. 力学学报. 2020(03): 774-786 . 本站查看
    13. 赵丰,郭巍,罗统波,黄浩. CFRP汽车储气罐低速冲击损伤特性分析. 塑料. 2020(04): 58-64 . 百度学术
    14. 李正,杨庆生,尚军军,刘夏. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能. 力学学报. 2020(06): 1700-1708 . 本站查看
    15. 李则霖,李晖,王东升,任朝晖,祖旭东,周晋,官忠伟,王相平. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 力学学报. 2020(06): 1690-1699 . 本站查看

    其他类型引用(23)

计量
  • 文章访问数:  1888
  • HTML全文浏览量:  347
  • PDF下载量:  223
  • 被引次数: 38
出版历程
  • 收稿日期:  2019-05-21
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回