EI、Scopus 收录
中文核心期刊

一种基于超声共振谱的低Q值材料共振频率提取方法

张强, 樊璠, 王蕊, 沈飞, 牛海军

张强, 樊璠, 王蕊, 沈飞, 牛海军. 一种基于超声共振谱的低Q值材料共振频率提取方法[J]. 力学学报, 2019, 51(5): 1500-1506. DOI: 10.6052/0459-1879-19-049
引用本文: 张强, 樊璠, 王蕊, 沈飞, 牛海军. 一种基于超声共振谱的低Q值材料共振频率提取方法[J]. 力学学报, 2019, 51(5): 1500-1506. DOI: 10.6052/0459-1879-19-049
Zhang Qiang, Fan Fan, Wang FeiNiu, Shen Fei, Niu Haijun. A RESONANCE FREQUENCY EXTRACTION METHOD FROM LOW Q-FACTOR MATERIALS BASED ON RESONANT ULTRASOUND SPECTROSCOPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1500-1506. DOI: 10.6052/0459-1879-19-049
Citation: Zhang Qiang, Fan Fan, Wang FeiNiu, Shen Fei, Niu Haijun. A RESONANCE FREQUENCY EXTRACTION METHOD FROM LOW Q-FACTOR MATERIALS BASED ON RESONANT ULTRASOUND SPECTROSCOPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1500-1506. DOI: 10.6052/0459-1879-19-049
张强, 樊璠, 王蕊, 沈飞, 牛海军. 一种基于超声共振谱的低Q值材料共振频率提取方法[J]. 力学学报, 2019, 51(5): 1500-1506. CSTR: 32045.14.0459-1879-19-049
引用本文: 张强, 樊璠, 王蕊, 沈飞, 牛海军. 一种基于超声共振谱的低Q值材料共振频率提取方法[J]. 力学学报, 2019, 51(5): 1500-1506. CSTR: 32045.14.0459-1879-19-049
Zhang Qiang, Fan Fan, Wang FeiNiu, Shen Fei, Niu Haijun. A RESONANCE FREQUENCY EXTRACTION METHOD FROM LOW Q-FACTOR MATERIALS BASED ON RESONANT ULTRASOUND SPECTROSCOPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1500-1506. CSTR: 32045.14.0459-1879-19-049
Citation: Zhang Qiang, Fan Fan, Wang FeiNiu, Shen Fei, Niu Haijun. A RESONANCE FREQUENCY EXTRACTION METHOD FROM LOW Q-FACTOR MATERIALS BASED ON RESONANT ULTRASOUND SPECTROSCOPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1500-1506. CSTR: 32045.14.0459-1879-19-049

一种基于超声共振谱的低Q值材料共振频率提取方法

基金项目: 1) 国家自然科学基金资助项目(11772037);国家自然科学基金资助项目(31570945)
详细信息
    通讯作者:

    牛海军

  • 中图分类号: O426.9,O341

A RESONANCE FREQUENCY EXTRACTION METHOD FROM LOW Q-FACTOR MATERIALS BASED ON RESONANT ULTRASOUND SPECTROSCOPY

  • 摘要: 超声共振谱技术通过测量样本在超声激励下产生的固有共振频率来计算弹性参数,而共振频率的提取是整个测量过程的关键.低$Q$值(品质因数)材料由于其衰减特性,导致共振谱平缓并无法直观地从谱图上观察得到共振频率,为从中提取更为有效的共振频率, 本文提出了一种新的共振频率提取方法.采用经验模态分解法将材料频率响应自适应分解为有限个具有特殊振荡特性的固有模态函数分量,根据材料的超声共振谱先验信息选择具有共振频率特性的固有模态函数分量,并从中提取共振频率. 以短切纤维环氧树脂材料(仿骨材料, $Q \approx$25)为例, 通过实验与传统线性预测方法进行对比,计算弹性系数和工程模量. 实验结果表明新方法的计算效率高,对弱激发模态更为敏感,共振频率的匹配数量(26)多于传统方法(21)且满足5倍于弹性系数的估计要求,优化后的弹性模量更接近标准值.新方法可从低$Q$值材料平缓的频谱中提取数量足够且有效的共振频率,不仅有效提升了力学参数估计的可靠性,而且拓展了超声共振谱技术的应用范围.
    Abstract: Resonant ultrasound spectroscopy (RUS) allows identification of the elastic coefficients of solid materials vibrating under an ultrasonic excitation from the measurement of their inherent frequencies. Retrieving the resonant frequencies is therefore a key signal processing step in RUS. However, according to the attenuation characteristics of low $Q$-factor (quality factor) materials, the resonance spectrum obtained by the experiment is flat and the resonance frequencies can not be directly observed from the spectrum. Therefore, in order to retrieve more effective resonance frequencies than traditional approach from the low $Q$-factor materials, a new extraction method of resonance frequencies was proposed to solve the limitation in this paper. The empirical mode decomposition method was used to decompose the frequency response of the specimen into finite Intrinsic Mode Function (IMF) components with special oscillation characteristics. According to the prior information of resonant ultrasound spectroscopy (RUS),the relevant IMF component was selected to retrieve reliable resonance frequencies from the resonance spectrum. The short fiber filled epoxy (a kind of bone-like materials, $Q \approx $25) was adopted as the specimen to calculate the elastic coefficients and engineering moduli compared with the traditional linear prediction method. The experimental results show that the new method has high computational efficiency and is more sensitive to the weak excitation modes of low $Q$-factor materials. The number of effective resonance frequencies (26) are more than traditional linear prediction methods (21), which also satisfied 5 times estimation requirement of elastic constants. In addition, the optimized elastic moduli are closer to the standard values of the short fiber filled epoxy. In conclusion, the EMD-based method can retrieve a sufficient quantity and effective resonance frequencies from the flat spectrum of low $Q$-factor materials, which can not only improve the reliability of the estimation of mechanical parameters, but also extend the application range of resonant ultrasound spectroscopy.
  • [1] Migliori A, Sarrao JL, Visscher WM , et al. Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Phys B, 1993,183(1-2):1-24
    [2] Migliori A, Sarrao JL . Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation. New York: Wiley, 1997
    [3] Migliori A, Maynard JD . Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Physica B Condensed Matter, 2005,76(12):1-7
    [4] Maynard JD . The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement. The Journal of the Acoustical Society of America, 1992,91(3):1754-1762
    [5] Carcione JM, Fabio C . Attenuation and quality factor surfaces in anisotropic-viscoelastic media. Mechanics of Materials, 1995,19(4):311-327
    [6] Yu X, Shi L, Han DZ , et al. High quality factor metallodielectric hybrid plasmonic-photonic crystals. Advanced Functional Materials, 2010,20(12):1910-1916
    [7] Shi W, Zhao H, Ma J , et al. Investigating the frequency spectrum of mechanical quality factor for piezoelectric materials based on phenomenological model. Japanese Journal of Applied Physics, 2015,54(10):101501
    [7] 张东升, 安兵兵 . 生物硬组织材料力学研究方法进展. 医用生物力学, 2012,27(2):122-128
    [7] ( Zhang Dongsheng, An Bingbing . Advances in research methods on mechanics of materials for biological hard tissues. Journal of Medical Biomechanics, 2012,27(2):122-128 (in Chinese))
    [9] 肖森, 杨济匡, 肖志 等. 基于正面碰撞实验的胸部损伤有限元分析. 力学学报, 2017,49(1):191-201
    [9] ( Xiao Sen, Yang Jikuang, Xiao Zhi , et al. Analysis of chest injury in frontal impact via finite element modelling based on biomechanical experiment. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):191-201 (in Chinese))
    [10] 孙攀旭, 杨红, 吴加峰 等. 基于频率相关黏性阻尼模型的复模态叠加法. 力学学报, 2018,50(5):217-229
    [10] ( Sun Panxu, Yang Hong, Wu Jiafeng , et al. Complex mode superposition method based on frequency dependent viscous damping model. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):217-229 (in Chinese))
    [11] Lebedev AV . Method of linear prediction in the ultrasonic spectroscopy of rock. Acoustical Physics, 2002,48(3):339-346
    [12] Lebedev AV, Ostrovskii LA, Sutin AM , et al. Resonant acoustic spectroscopy at low Q factors. Acoustical Physics, 2003,49(1):81-87
    [13] Lebedev AV, Bredikhin VV, Bretshtein YS . Correlation between elastic anisotropy and magnetic susceptibility anisotropy of sedimentary and metamorphic rock. Acoustical Physics, 2012,58(3):354-362
    [14] Kinney JH, Marshall SJ, Marshall GW . The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Critical Reviews in Oral Biology & Medicine, 2003,14(1):13-29
    [15] Kinney JH, Gladden JR, Marshall GW , et al. Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. Journal of Biomechanics, 2004,37(4):437-441
    [16] Bernard S, Grimal Q, Laugier P . Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy. Journal of the Mechanical Behavior of Biomedical Materials, 2013,18:12-19
    [17] Bernard S, Grimal Q, Laugier P . Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials. Journal of the Acoustical Society of America, 2014,135(5):2601-2613
    [18] Bernard S, Grimal Q, Laugier P . Development and validation of resonant ultrasound spectroscopy for the measurement of cortical bone elasticity on small cylindrical samples. Journal of the Acoustical Society of America, 2013,133(5):3585-3585
    [19] Fan F, Feng D, Wang R , et al. The elasticity coefficients measurement of human dentin based on RUS. BioMed Research International, 2017(3b):1-7
    [20] Huang NE, Shen Z, Long SR , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998,454(1971):903-995
    [21] Mandic DP, Rehman NU, Wu Z , et al. Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Signal Processing Magazine, 2013,30(6):74-86
    [22] 胡爱军, 孙敬敬, 向玲 . 经验模态分解中的模态混叠问题. 振动. 测试与诊断, 2011,31(4):429-434
    [22] ( Hu Aijun, Sun Jingjing, Xiang Ling . A novel method for vibration fault diagnosis based on time information fusion. Journal of Vibration, Measurement & Diagnosis, 2011,31(4):429-434 (in Chinese))
    [23] 曹莹, 段玉波, 刘继承 . Hilbert-Huang变换中的模态混叠问题. 振动. 测试与诊断, 2016,36(3):518-523
    [23] ( Cao Ying, Duan Yubo, Liu Jicheng . Research and application of mode-mixing in Hilbert-Huang transform. Journal of Vibration, Measurement & Diagnosis, 2016,36(3):518-523(in Chinese))
    [24] Wu ZH, Huang NE . Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis. 2009,1(1):1-41
    [25] Wu Z, Huang NE . A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings Mathematical Physical & Engineering Sciences, 2004,460(2046):1597-1611
    [26] Feng D, Fan F, Wang R , et al. Measurement of human enamel mechanical characteristics with resonant ultrasound spectroscopy International Conference of the IEEE Engineering in Medicine & Biology Society, 2017
    [27] 万征, 宋琛琛, 赵晓光 . 一种横观各向同性强度准则及变换应力空间. 力学学报, 2018,50(5):200-216
    [27] ( Wan Zheng, Song Chenchen, Zhao Xiaoguang . One kind of transverse isotropic strength criterion and the transformation stress space. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):200-216 (in Chinese))
    [28] 冯丹丹, 樊璠, 王蕊 等. 基于超声共振谱方法的人牙釉质材料力学特性研究. 医用生物力学, 2017,32(5):448-453
    [28] ( Feng Dandan, Fan Fan, Wang Rui , et al. Mechanical properties of human enamel based on resonant ultrasound spectroscopy. Journal of Medical Biomechanics, 2017,32(5):448-453 (in Chinese))
    [29] Ulrich TJ, Mccall KR, Guyer RA . Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy. The Journal of the Acoustical Society of America, 2002,111(4):1667-1674
    [30] 陈玳珩, 杨璐 . 蜂窝板复合材料的等价弹性模量. 力学学报, 2011,43(3):514-522
    [30] ( Chen Daiheng, Yang Lu . Analysis of equivalent elastic modulus of a honeycomb sandwich. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(3):514-522 (in Chinese))
    [31] Niu HJ, Fan F, Wang R , et al. Elastic properties measurement of human enamel based on resonant ultrasound spectroscopy. Journal of the Mechanical Behavior of Biomedical Materials, 2019,89:48-53
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回