EI、Scopus 收录
中文核心期刊

压电式微滴按需喷射的过程控制和规律

刘赵淼, 徐元迪, 逄燕, 任彦霖, 高山山, 钟希祥

刘赵淼, 徐元迪, 逄燕, 任彦霖, 高山山, 钟希祥. 压电式微滴按需喷射的过程控制和规律[J]. 力学学报, 2019, 51(4): 1031-1042. DOI: 10.6052/0459-1879-19-035
引用本文: 刘赵淼, 徐元迪, 逄燕, 任彦霖, 高山山, 钟希祥. 压电式微滴按需喷射的过程控制和规律[J]. 力学学报, 2019, 51(4): 1031-1042. DOI: 10.6052/0459-1879-19-035
Liu Zhaomiao, Xu Yu, i, Pang Yan, Ren Yanlin, Gao Shanshan. STUDY OF PROCESS CONTROL ON PIEZOELECTRIC DROP-ON-DEMAND EJECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1031-1042. DOI: 10.6052/0459-1879-19-035
Citation: Liu Zhaomiao, Xu Yu, i, Pang Yan, Ren Yanlin, Gao Shanshan. STUDY OF PROCESS CONTROL ON PIEZOELECTRIC DROP-ON-DEMAND EJECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1031-1042. DOI: 10.6052/0459-1879-19-035
刘赵淼, 徐元迪, 逄燕, 任彦霖, 高山山, 钟希祥. 压电式微滴按需喷射的过程控制和规律[J]. 力学学报, 2019, 51(4): 1031-1042. CSTR: 32045.14.0459-1879-19-035
引用本文: 刘赵淼, 徐元迪, 逄燕, 任彦霖, 高山山, 钟希祥. 压电式微滴按需喷射的过程控制和规律[J]. 力学学报, 2019, 51(4): 1031-1042. CSTR: 32045.14.0459-1879-19-035
Liu Zhaomiao, Xu Yu, i, Pang Yan, Ren Yanlin, Gao Shanshan. STUDY OF PROCESS CONTROL ON PIEZOELECTRIC DROP-ON-DEMAND EJECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1031-1042. CSTR: 32045.14.0459-1879-19-035
Citation: Liu Zhaomiao, Xu Yu, i, Pang Yan, Ren Yanlin, Gao Shanshan. STUDY OF PROCESS CONTROL ON PIEZOELECTRIC DROP-ON-DEMAND EJECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1031-1042. CSTR: 32045.14.0459-1879-19-035

压电式微滴按需喷射的过程控制和规律

基金项目: 1) 装备预研领域基金资助项目(61409230309)
详细信息
    通讯作者:

    刘赵淼

  • 中图分类号: O359+.1

STUDY OF PROCESS CONTROL ON PIEZOELECTRIC DROP-ON-DEMAND EJECTION

  • 摘要: 微滴喷射增材制造技术中沉积微滴的大小与均匀性是影响成型件质量的关键因素.本文设计了一种用于生成均匀微滴的压电驱动式微滴喷射装置,通过压电材料带动柔性膜片振动,将液体从喷嘴中喷出生成微滴,采用数值模拟和实验相结合的方法,研究了不同控制参数下膜片振幅及其对生成微滴尺寸和均匀性的影响.研究结果表明:膜片振幅大小受到驱动电压和压电频率的共同影响,压电频率是导致膜片中心点振幅实验测量值小于理论计算值的主要原因,膜片振动会导致喷嘴内部压力发生变化从而影响微滴生成尺寸.在相同驱动电压条件下,压电频率为10 Hz时存在压电膜片振幅最大值.随着膜片振幅的增大,喷孔处液体速度和液柱长度增大到临界值时可以生成微滴,当喷孔处的液柱长度超过临界值时,会形成卫星液滴. 当膜片振幅区间在30 $\mu$m$\sim $42 $\mu $m可以稳定生成微滴,生成最小微滴尺寸为339.8$\mu$m,直径最大变化率为0.29%,相邻两微滴间距最大变化率为2.67%,生成微滴的尺寸及均匀性较好.研究结果有助于提高压电式微滴喷射装置的液滴生成质量.
    Abstract: The size and uniformity of micro-droplets are key factors influencing the quality of the molded part by micro-droplet ejecting additive manufacturing technology. In this paper, a piezo-actuated micro-droplet ejection device for generating uniform micro-droplets is studied. The piezoelectric material drives the flexible diaphragm to vibrate and pushes the liquid out of the nozzle and produces micro-droplets. The amplitude of the diaphragm under different control parameters and its influence on the size and uniformity of the generated micro-droplets are investigated by numerical simulation and experiment. The results indicate that the amplitude of the diaphragm is affected by the driving voltage and the piezoelectric frequency and the experimental value of the diaphragm's center point amplitude is less than that of the theoretical calculation value which is mainly influenced by the piezoelectric frequency. The amplitude of the diaphragm will change the pressure inside the nozzle, which leads to the varied sizes of the micro-droplet. When the driving voltage is constant, the diaphragm has the maximum amplitude for the piezoelectric frequency at 10 Hz. As the amplitude of the diaphragm increases, droplets can be generated when the liquid velocity at the orifice and the length of the liquid column increase to a critical value. As the amplitude of the diaphragm continues to increase and the length of the liquid column at the orifice is beyond to a critical value, a satellite micro-droplet is formed. When the amplitude range of the membrane is between 30 $\mu $m and 42 $\mu $m, micro-droplets can be stably formed whose uniformity and size meet the demand well, and the minimum generating micro-droplets size is 339.8 $\mu $m. The maximum change rate of droplet diameter and adjacent two droplets are 0.29% and 2.67% respectively. Results are benefit to promote the uniformity of micro-droplets and will provide a reference for the development of piezoelectric droplet ejection devices.
  • [1] Lee TM, Kang TG, Yang JS , et al. Drop-on-demand solder droplet jetting system for fabricating microstructure. IEEE Transactions on Electronics Packaging Manufacturing, 2008,31(3):202-210
    [2] Gao W, Zhang YB, Ramanujan D , et al. The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 2015,69:65-89
    [3] 卢秉恒, 李涤尘 . 增材制造(3D打印)技术发展. 机械制造与自动化, 2013,42(4):1-4
    [3] ( Lu Bingheng, Li Dichen . Development of the additive manufacturing (3D printing) technology. Machine Building & Automation, 2013,42(4):1-4(in Chinese))
    [4] Li SL, Wei ZY, Jun D , et al. Research on the manufacturing of electrical power fittings based on metal droplet deposition. Applied Physics a-Materials Science & Processing, 2017,123(6):405-411
    [5] 兰红波, 李涤尘, 卢秉恒 . 微纳尺度3D打印. 中国科学:技术科学, 2015,45(9):919-940
    [5] ( Lan Hongbo, Li Dichen, Lu Bingheng . Micro-and nanoscale 3D printing. Sci Sin Chinese, 2015,45(9):919-940(in Chinese))
    [6] 罗莹莹, 罗志伟, 赵小双 等. 微滴喷射阀的种类及发展状况. 重庆理工大学学报(自然科学). 2015,29(12):77-83
    [6] ( Luo Yingying, Luo Zhiwei, Zhao Xiaoshuang , et al. Types and development status of micro-droplet jetting valve. Journal of Chongqing University of Technology (Natural Science), 2015,29(12):77-83 (in Chinese))
    [7] 李茜, 朱丽, 王洪成 等. 基于微流体脉冲驱动控制技术的导线印制系统的设计. 仪表技术与传感器, 2015(5):76-79
    [7] ( Li Xi, Zhu Li, Wang Hongcheng et al. Types and development status of micro-droplet jetting valve. Instrument Technique and Sensor, 2015(5):76-79(in Chinese))
    [8] 连芩, 刘亚雄, 贺健康 等. 生物制造技术及发展. 中国工程科学, 2013,15(1):45-50
    [8] ( Lian Qin, Li Yaxiong, He Jiankang , et al. Bio-manufacturing technology and development. Engineering Science, 2013,15(1):45-50(in Chinese))
    [9] Li JP, Chen MJ, Fan XQ , et al. Recent advances in bioprinting techniques: approaches, applications and future prospects. Journal of Translational Medicine, 2016,14(1):271-286
    [10] Zhu XY, Zhu L, Chen HJ , et al. Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds. Optics and Laser Technology, 2015,68:23-27
    [11] Murphy SV, Atala A . 3D bioprinting of tissues and organs. Nature Biotechnology, 2014,32(8):773-785
    [12] 甘云华, 江政纬, 李海鸽 . 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报, 2017,49(6):1272-1279
    [12] ( Gan Yunhua, Jiang Zhengwei, Li Haige . A study on droplet velocity of ethanol during electrospraying process at cone-jet mode. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1272-1279 (in Chinese))
    [13] Khalate AA, Bombois X, Babuska R , et al. Performance improvement of a drop-on-demand inkjet printhead using an optimization-based feedforward control method. Control Engineering Practice, 2011,19(8):771-781
    [14] Gerdes B, Zengerle R, Koltay P , et al. Direct printing of miniscule aluminum alloy droplets and 3D structures by StarJet technology. Journal of Micromechanics and Microengineering, 2018,28(7):074-082
    [15] Zhao L, Yan KRC, Yao R , et al. Alternating force based drop-on-demand microdroplet formation and three-dimensional deposition. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2015,137(3):031-041
    [16] 齐乐华, 钟宋义, 罗俊 . 基于均匀金属微滴喷射的3D打印技术. 中国科学:信息科学, 2015,45(2):212-223
    [16] ( Qi Lehua, Zhong Songyi, Luo Jun . 3D printing technology based on uniform metal droplet ejection. Scientia Sinica Informationis, 2015,45(2):212-223(in Chinese))
    [17] Amirzadeh A, Raessi M, Chandra S . Producing molten metal droplets smaller than the nozzle diameter using a pneumatic drop-on-demand generator. Experimental Thermal and Fluid Science, 2013,47:26-33.
    [18] Sohn H, Yang DY . Drop-on-demand deposition of superheated metal droplets for selective infiltration manufacturing. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005,392(1-2):415-421.
    [19] 魏大忠, 张人佶, 吴任东 等. 压电驱动微滴喷射过程的数学模型. 中国机械工程, 2005,16(7):611-614
    [19] ( Wei Dazhong, Zhang renji, Wu Rendong , et al. Mathematical model of piezoelectric actuated micro-droplet jetting process. China Mechanical Engineering, 2005,16(7):611-614(in Chinese))
    [20] Sadeghian H, Hojjat Y, Ghodsi M , et al. An approach to design and fabrication of a piezo-actuated microdroplet generator. International Journal of Advanced Manufacturing Technology, 2014,70(5-8):1091-1099
    [21] Fan KC, Chen JY, Wang CH , et al. Development of a drop-on-demand droplet generator for one-drop-fill technology. Sensors and Actuators a-Physical, 2008,147(2):649-655
    [22] Wang K, Xi J . Multi-field coupling numerical model and its applications of piezoelectric actuated diaphragm-driven microjet. China Mechanical Engineering, 2017,46(1):117-120
    [23] Wu HC, Hwang WS, Lin HJ . Development of a three-dimensional simulation system for micro-inkjet and its experimental verification. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004,373(1-2):268-278
    [24] Luo J, Qi LH, Zhou JM , et al. Modeling and characterization of metal droplets generation by using a pneumatic drop-on-demand generator. Journal of Materials Processing Technology, 2012,212(3):718-726
    [25] Zhong SY, Qi LH, Luo J , et al. Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. Journal of Materials Processing Technology, 2014,214(12):3089-3097
    [26] 于永泽, 陈海萍, 胡庆夕 . 生物凝胶微孔挤出胀大的有限元模拟与三维打印成形. 机械工程学报, 2014,50(19):151-157
    [26] ( Yu Yongze, Chen Haiping, Hu Qingxi . Finite element simulation of bio-gel micropore extrudate swell and three-dimensional printing manufacturing. Journal of Mechanical Engineering, 2014,50(19):151-157(in Chinese))
    [27] 郑大龙, 闫宝瑞, 李亦哲 等. 快速成型过程中聚合物液滴喷射的无网格模拟及实验研究. 北京化工大学学报(自然科学版), 2016,43(1):72-77
    [27] ( Zheng Dalong, Yan Baorui, Li Yizhe . Meshless simulation of polymer droplet ejection during rapid prototyping experimental study. Journal of Beijing University of Chemical Technology (Natural Science), 2016,43(1):72-77(in Chinese))
    [28] 刘赵淼, 王文凯, 逄燕 . 扩展腔对方波型微混合器混合性能的影响研究. 力学学报, 2018,50(2):254-262
    [28] ( Liu Zhaomiao, Wang Wenkai, Pang Yan . Influence of expanded cavity on mixing performance of square-wave micro-mixer. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):254-262(in Chinese))
    [29] 周诗贵, 习俊通 . 压电驱动膜片式微滴喷射仿真与尺度一致性试验研究. 机械工程学报, 2013,49(8):178-185
    [29] ( Zhou Shigui, Xi Juntong . Simulation and experiment study on piezoelectric actuated diaphragm-driven microdroplet jetting. Journal of Mechanical Engineering, 2013,49(8):178-185(in Chinese))
    [30] 肖渊, 黄亚超 . 气动式微滴喷射过程仿真与尺寸均匀性试验研究. 中国机械工程, 2014,25(21):2936-2941
    [30] ( Xiao Yuan, Huang Yachao . Simulation of pneumatic driven microdroplet jetting process and experimental study of microdroplrt's uniformity. China Mechanical Engineering, 2014,25(21):2936-2941 (in Chinese))
    [31] Li SF, Chen SC . Analytical analysis of a circular PZT actuator for valveless micropumps. Sensors and Actuators a -Physical, 2003,104(2):151-161
    [32] Timoshenko SP, Woinowsky-Krieger S . Theory of Plates and Shells. City: McGraw-hill, 1959
    [33] Brunahl J, Grishin AM . Piezoelectric shear mode drop-on-demand inkjet actuator. Sensors and Actuators a -Physical, 2002,101(3):371-382
    [34] 刘赵淼, 王凯峰, 王治林 等. 阶梯型加速段对旋流喷嘴雾化特性的影响. 力学学报, 2018,50(3):570-578
    [34] ( Liu Zhaomiao, Wang Kaifeng, Wang Zhilin , et al. Influence of ladder type accelerating section on atomization characteristics of pressure swirl atomizer. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):570-578(in Chinese))
  • 期刊类型引用(12)

    1. 田东兴. 喷射式3D打印过程微滴沉积位置建模与预测. 计算机测量与控制. 2024(05): 60-65 . 百度学术
    2. 胥光申,徐晋,杨鹏程,肖渊,王兆辉,梁蒲佳. 基于Faster R-CNN的织物表面打印导电线路中微滴目标检测. 纺织高校基础科学学报. 2023(01): 41-48+56 . 百度学术
    3. 曹福来,李耀辉. 基于电流体动力学的微滴按需打印装置的设计. 许昌学院学报. 2023(02): 144-147 . 百度学术
    4. 李润,梁文峰,朱慧轩,高飞扬,李松. 高黏度压电式膜片喷头仿真分析与实验研究. 微纳电子技术. 2023(06): 948-956 . 百度学术
    5. 杨伟东,线洪萱,刘卫胜,王媛媛. 微滴喷射中喷嘴间距对微滴轨迹影响的研究. 现代制造工程. 2022(09): 15-21 . 百度学术
    6. 丁松年,薛长国. 脉冲间隔对喷射液滴大小的分析研究. 佳木斯大学学报(自然科学版). 2021(01): 82-84 . 百度学术
    7. 高翔宇,杨伟东,王媛媛,屠熹远,张争艳. 微滴喷射工艺参数与液滴形态关系的数值模拟. 机械科学与技术. 2021(03): 475-480 . 百度学术
    8. 章绍能,胡开鑫. 黏弹性液滴热毛细迁移的对流不稳定. 力学学报. 2021(05): 1313-1323 . 本站查看
    9. 徐晋,杨鹏程,肖渊,胥光申. 织物表面导电线路喷射打印中微滴关键参数的视觉测量. 纺织学报. 2021(07): 137-143 . 百度学术
    10. 任彦霖,刘赵淼,逄燕,王翔. 基于LBM的铝微滴斜柱沉积水平偏移研究. 力学学报. 2021(06): 1599-1608 . 本站查看
    11. 刘作平,周健,裴泽光,白涛,陈广锋. 同轴气流作用下压电式微滴喷射过程的数值模拟. 东华大学学报(自然科学版). 2021(04): 75-83 . 百度学术
    12. 刘轩,吴义鹏,裘进浩,季宏丽. 基于反激变压器的压电振动能量双向操控技术. 力学学报. 2021(11): 3045-3055 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  1661
  • HTML全文浏览量:  280
  • PDF下载量:  211
  • 被引次数: 20
出版历程
  • 收稿日期:  2019-01-28
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回