EI、Scopus 收录
中文核心期刊

功能梯度球形水凝胶的化学力学耦合分析

杨健鹏, 王惠明

杨健鹏, 王惠明. 功能梯度球形水凝胶的化学力学耦合分析[J]. 力学学报, 2019, 51(4): 1054-1063. DOI: 10.6052/0459-1879-19-019
引用本文: 杨健鹏, 王惠明. 功能梯度球形水凝胶的化学力学耦合分析[J]. 力学学报, 2019, 51(4): 1054-1063. DOI: 10.6052/0459-1879-19-019
Yang Jianpeng, Wang Huiming. CHEMOMECHANICAL ANALYSIS OF A FUNCTIONALLY GRADED SPHERICAL HYDROGEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1054-1063. DOI: 10.6052/0459-1879-19-019
Citation: Yang Jianpeng, Wang Huiming. CHEMOMECHANICAL ANALYSIS OF A FUNCTIONALLY GRADED SPHERICAL HYDROGEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1054-1063. DOI: 10.6052/0459-1879-19-019
杨健鹏, 王惠明. 功能梯度球形水凝胶的化学力学耦合分析[J]. 力学学报, 2019, 51(4): 1054-1063. CSTR: 32045.14.0459-1879-19-019
引用本文: 杨健鹏, 王惠明. 功能梯度球形水凝胶的化学力学耦合分析[J]. 力学学报, 2019, 51(4): 1054-1063. CSTR: 32045.14.0459-1879-19-019
Yang Jianpeng, Wang Huiming. CHEMOMECHANICAL ANALYSIS OF A FUNCTIONALLY GRADED SPHERICAL HYDROGEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1054-1063. CSTR: 32045.14.0459-1879-19-019
Citation: Yang Jianpeng, Wang Huiming. CHEMOMECHANICAL ANALYSIS OF A FUNCTIONALLY GRADED SPHERICAL HYDROGEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1054-1063. CSTR: 32045.14.0459-1879-19-019

功能梯度球形水凝胶的化学力学耦合分析

基金项目: 1) 国家自然科学基金资助项目(11772296);国家自然科学基金资助项目(11621062)
详细信息
    通讯作者:

    王惠明

  • 中图分类号: O343.5,O343.7

CHEMOMECHANICAL ANALYSIS OF A FUNCTIONALLY GRADED SPHERICAL HYDROGEL

  • 摘要: 作为一种新型智能材料,水凝胶具有特殊的化学力学耦合性能.采用功能梯度形式可使得水凝胶具有更好的适应性和可调控性.本研究中假设交联密度沿径向按幂函数规律变化,并基于水凝胶的大变形多场耦合一般理论,采用Flory-Huggins自由能函数,建立了功能梯度球形水凝胶在球对称情形的控制方程,并开展了功能梯度球形水凝胶在给定内压和化学势情行的非均匀大变形溶胀行为的理论研究.计算结果表明,不同梯度指数的球形水凝胶的内压、内孔半径曲线和内压、内表面径向伸长率曲线均呈现出一段稳定区间和另一段不稳定区间,说明内压超出某临界值会发生失稳并导致水凝胶的最终破坏.内压的临界值随梯度指数的增大而增大.研究表明,功能梯度球形水凝胶的材料参数(梯度指数、亲疏水特性、交联密度和溶剂分子的体积)和环境化学势对水凝胶溶胀行为具有重要的影响.在给定内表面压力的情况下,功能梯度球形水凝胶内表面的径向位移随梯度指数的改变接近为线性变化,而随其他参数的影响都呈现出明显的非线性.本研究有助于实现水凝胶智能结构和器件在复杂条件下的精准调控.}
    Abstract: As a kind of new smart materials, hydrogel has a special chemomechanical coupling effect. By using the functionally graded material, the adaptability and controllability of the hydrogel can be improved distinctly. In this analysis, the crosslink density of the hydrogel is assumed to be a power-law function of the radial position. By employing the general multi-field coupling large deformation theory and the Flory-Huggins free energy function, the governing equations of the functionally graded spherical hydrogel (FGSH) undergoing the spherically symmetric deformation are developed. The theoretical analysis of the swelling behavior accompanying the inhomogeneous large deformation is presented for the FGSH when subjected to the internal pressure and the prescribed chemical potential. Numerical results show that both the internal pressure-internal radius curve and the internal pressure-radial stretch curve exhibit a stable region and an unstable region, which means that if the internal pressure exceeds a certain critical value, the instability will occur and the hydrogel will finally be damaged. The critical value of the internal pressure increases with the increasing of gradient index. It is shown that the material parameters, such as gradient index, the interaction parameter between the polymer network and the solvent, the cross-link density and the volume of the solvent molecular, and the environmental chemical potential have a significant effect on the swelling behavior of the FGSH. If the internal pressure is fixed, the radial displacement of FGSH at the internal surface is nearly linear with respect to the gradient index, while it appears obvious nonlinear to other parameters. The investigation is helpful to realize the precise control of the hydrogel-based smart structures and devices under the complex environments.
  • [1] Hoffman AS . Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2002,54(1):3-12
    [2] Zhang YS, Khademhosseini A . Advances in engineering hydrogels. Science, 2017, 356(6337):eaaf3627
    [3] Li B, Xu GK, Feng XQ . Tissue-growth model for the swelling analysis of core-shell hydrogels. Soft Materials, 2013,11(2):117-124
    [4] Mredha MTI, Kitamura N, Nonoyama T , et al. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials, 2017,132:85-95
    [5] Carpi F, Smela E . Biomedical Applications of Electroactive Polymer Actuators. Chichester: John Wiley & Sons Ltd., 2009
    [6] 李铁风, 李国瑞, 梁艺鸣 等. 软体机器人结构机理与驱动材料研究综述. 力学学报, 2016,48(4):756-766
    [6] ( Li Tiefeng, Li Guorui, Liang Yiming , et al. Review of materials and structures in soft robotics. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):756-766 (in Chinese))
    [7] He H, Guan J, Lee JL . An oral delivery device based on self-folding hydrogels. Journal of Controlled Release, 2006,110(2):339-346
    [8] Zalachas N, Cai S, Suo Z , et al. Crease in a ring of a PH-sensitive hydrogel swelling under constraint. International Journal of Solids and Structures, 2013,50(6):920-927
    [9] 卢同庆, 孙丹琪, 王继堃 等. 高韧温敏复合水凝胶仿生变色鱼. 中国科学:技术科学, 2018,48(12):1288-1294
    [9] ( Lu Tongqing, Sun Danqi, Wang Jikun , et al. Hydrogel based biomimetic chameleon fish with super high toughness. Scientia Sinica Technologica, 2018,48(12):1288-1294 (in Chinese))
    [10] Hong W, Zhao XH, Zhou JX , et al. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008,56(5):1779-1793
    [11] Bouklas N, Landis CM, Huang R . A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels. Journal of the Mechanics and Physics of Solids, 2015,79:21-43
    [12] Liu Z, Toh W, Ng TY . Advances in mechanics of soft materials: A review of large deformation behavior of hydrogels. International Journal of Applied Mechanics, 2015,7(5):1530001
    [13] Hong W, Zhao XH, Suo ZG . Drying-induced bifurcation in a hydrogel-actuated nanostructure. Journal of Applied Physics, 2008,104(8):084905
    [14] Wang HM, Cai SQ . Cavitation in a swollen elastomer constrained by a non-swellable shell. Journal of Applied Physics, 2015,117(15):103535
    [15] Cai SQ, Suo ZG . Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. Journal of the Mechanics and Physics of Solids, 2011,59(11):2259-2278
    [16] Guo W, Li M, Zhou J . Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Materials and Structures, 2013,22(11):115028
    [17] Zheng SJ, Liu ZS . Phase transition of temperature-sensitive hydrogel under mechanical constraint. ASME Journal of Applied Mechanics, 2018,85(2):021002
    [18] Hong W, Liu Z, Suo Z . Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures, 2009,46(17):3282-3289
    [19] Zhang W, Hu J, Tang J , et al. Fracture toughness and fatigue threshold of tough hydrogels. ACS Macro Letters, 2018,8(1):17-23
    [20] Lai F, Li H . Modeling of effect of initial fixed charge density on smart hydrogel response to ionic strength of environmental solution. Soft Matter, 2010,6(2):311-320
    [21] Attaran A, Brummund J, Wallmersperger T . Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels. Smart Materials and Structures, 2015,24(3):035021
    [22] Zhao X, Hong W, Suo Z . Inhomogeneous and anisotropic equilibrium state of a swollen hydrogel containing a hard core. Applied Physics Letters, 2008,92(5):051904
    [23] Wu Z, Zhong Z . Inhomogeneous equilibrium swelling of core-shell-coating gels. Soft Materials, 2013,11(2):215-220
    [24] Wang HM, Cai SQ . Drying-induced cavitation in a constrained hydrogel. Soft Matter, 2015,11(6):1058-1061
    [25] Dai HH, Song Z . Some analytical formulas for the equilibrium states of a swollen hydrogel shell. Soft Matter, 2011,7(18):8473-8483
    [26] Zheng SJ, Li ZQ, Liu ZS . The fast homogeneous diffusion of hydrogel under different stimuli. International Journal of Mechanical Sciences, 2018,137:263-270
    [27] 郑保敬, 梁钰, 高效伟 等. 功能梯度材料动力学问题的POD模型降阶分析. 力学学报, 2018,50(4):787-797
    [27] ( Zheng Baojing, Liang Yu, Gao Xiaowei , et al. Analysis for dynamic response of functionally graded materials using pod based reduced order model. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):787-797 (in Chinese))
    [28] 许新, 李世荣 . 功能梯度材料微梁的热弹性阻尼研究. 力学学报, 2017,49(2):308-316
    [28] ( Xu Xin, Li Shirong . Analysis of thermoelastic damping for functionally graded material micro-beam. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):308-316 (in Chinese))
    [29] 马强, 周凤玺, 刘杰 . 梯度波阻板的地基振动控制研究. 力学学报, 2017,49(6):1360-1369
    [29] ( Ma Qiang, Zhou Fengxi, Liu Jie . Analysis of ground vibration control by graded wave impeding block. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1360-1369 (in Chinese))
    [30] Guvendiren M, Yang S, Burdick JA . Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Advanced Functional Materials, 2009,19(19):3038-3045
    [31] Bakarich SE, Gorkin III R, Gately R , et al. 3D printing of tough hydrogel composites with spatially varying materials properties. Additive Manufacturing, 2017,14:24-30
    [32] Guvendiren M, Burdick JA, Yang S . Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter, 2010,6(9):2044-2049
    [33] Wu Z, Bouklas N, Huang R . Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction. International Journal of Solids and Structures, 2013,50(3-4):578-587
    [34] Anani Y, Rahimi GH . Stress analysis of thick pressure vessel composed of functionally graded incompressible hyperelastic materials. International Journal of Mechanical Sciences, 2015,104(3):1-7
    [35] Flory PJ, Rehner JJ . Statistical mechanics of cross-linked polymer networks II. Swelling. Journal of Chemical Physics, 1943,11(11):521-526
    [36] Zamani V, Pence TJ . Swelling, inflation, and a swelling-burst instability in hyperelastic spherical shells. International Journal of Solids and Structures, 2017,125:134-149
    [37] Cheng J, Jia Z, Guo HY , et al. Delayed burst of a gel balloon. Journal of the Mechanics and Physics of Solids, 2019,124:143-158
  • 期刊类型引用(3)

    1. 刘岩,王惠明. 考虑微观变形特征的水凝胶均匀和非均匀溶胀分析及其影响参数研究. 力学学报. 2021(02): 437-447 . 本站查看
    2. 李杨,秦庆华,张亮亮,高阳. 一维准晶功能梯度层合圆柱壳热电弹性精确解. 力学学报. 2020(05): 1286-1294 . 本站查看
    3. 史惠琦,王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析. 力学学报. 2020(06): 1719-1729 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1709
  • HTML全文浏览量:  267
  • PDF下载量:  198
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-01-13
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回