EI、Scopus 收录
中文核心期刊

考虑可控性的压电作动器拓扑优化设计

胡骏, 亢战

胡骏, 亢战. 考虑可控性的压电作动器拓扑优化设计[J]. 力学学报, 2019, 51(4): 1073-1081. DOI: 10.6052/0459-1879-19-012
引用本文: 胡骏, 亢战. 考虑可控性的压电作动器拓扑优化设计[J]. 力学学报, 2019, 51(4): 1073-1081. DOI: 10.6052/0459-1879-19-012
Hu Jun, Kang Zhan. TOPOLOGY OPTIMIZATION OF PIEZOELECTRIC ACTUATOR CONSIDERING CONTROLLABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1073-1081. DOI: 10.6052/0459-1879-19-012
Citation: Hu Jun, Kang Zhan. TOPOLOGY OPTIMIZATION OF PIEZOELECTRIC ACTUATOR CONSIDERING CONTROLLABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1073-1081. DOI: 10.6052/0459-1879-19-012
胡骏, 亢战. 考虑可控性的压电作动器拓扑优化设计[J]. 力学学报, 2019, 51(4): 1073-1081. CSTR: 32045.14.0459-1879-19-012
引用本文: 胡骏, 亢战. 考虑可控性的压电作动器拓扑优化设计[J]. 力学学报, 2019, 51(4): 1073-1081. CSTR: 32045.14.0459-1879-19-012
Hu Jun, Kang Zhan. TOPOLOGY OPTIMIZATION OF PIEZOELECTRIC ACTUATOR CONSIDERING CONTROLLABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1073-1081. CSTR: 32045.14.0459-1879-19-012
Citation: Hu Jun, Kang Zhan. TOPOLOGY OPTIMIZATION OF PIEZOELECTRIC ACTUATOR CONSIDERING CONTROLLABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1073-1081. CSTR: 32045.14.0459-1879-19-012

考虑可控性的压电作动器拓扑优化设计

基金项目: 1) 国家杰出青年科学基金项目(11425207);国家自然科学基金辽宁联合基金重点项目(U1508209)
详细信息
    通讯作者:

    亢战

  • 中图分类号: O342

TOPOLOGY OPTIMIZATION OF PIEZOELECTRIC ACTUATOR CONSIDERING CONTROLLABILITY

  • 摘要: 压电作动器可以把电能转换成机械能,在结构主动振动控制中具有应用背景. 由于压电作动器的布局对振动控制效果影响很大,因此作动器布局优化一直是结构控制研究的关键之一. 为了提高压电结构控制能量的利用效率,本文提出了以提高结构可控性为目标的压电作动器的拓扑优化方法. 基于经典层合板理论对压电结构进行了有限元建模,并采用模态叠加法将动力控制方程映射到模态空间,推导了基于控制矩阵奇异值的可控性指标. 优化模型中,选取可控性指标指数形式为目标函数,将设计变量定义为作动器单元的相对密度,并基于人工密度惩罚模型构造了压电系数惩罚模型,给出了基于控制矩阵奇异值的可控性指标关于设计变量的灵敏度分析方法. 优化问题采用基于梯度的数学规划法求解. 数值算例验证了灵敏度分析方法和优化模型的有效性,并讨论了主要因素对优化结果的影响.
    Abstract: Piezoelectric actuators can convert electrical energy into mechanical energy, and has application potential in active vibration control of structures. Since the layout of the piezoelectric actuators has a great influence on the vibration control effect, the optimization of the actuators has always been one of the key factors to structural control. In order to improve the efficiency of control energy in the piezoelectric structure, this paper proposes a topology optimization method for the layout design of piezoelectric actuators with the goal of improving structural controllability. The finite element modeling of the piezoelectric structure is carried out based on the classical laminate theory. The modal superposition method is used to map the dynamic governing equation to the modal space. The controllability index based on the singular value of the control matrix is derived. In the optimization model, the exponential form of the controllability index is chosen as the objective function, and the design variables are the relative densities of the actuator elements. Based on the Solid Isotropic Material Penalization method, an artificial piezoelectric coefficient penalty model is constructed. Sensitivity analysis for the controllability index is proposed based on the singular value of the control matrix. The optimization problem is solved by a gradient-based mathematical programming method. Numerical examples verify the effectiveness of the sensitivity analysis method and the optimization model and show the significance of the layout design of piezoelectric actuators. The influence of some key factors on the optimization results are discussed. It shows that the more piezoelectric materials, the better the controllability; the modes of interest in the objective function has a great influence on the layout of the piezoelectric actuators.
  • [1] Gupta V, Sharma M, Thakur N . Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review. Journal of Intelligent Material Systems and Structures, 2010,21:1227-1243
    [2] Salas RA, Ramírez-Gil FJ, Montealegre-Rubio W , et al. Optimized dynamic design of laminated piezocomposite multi-entry actuators considering fiber orientation. Computer Methods in Applied Mechanics and Engineering, 2018,335:223-254
    [3] Hu K, Li H . Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells. Journal of Sound and Vibration, 2018,426:166-185
    [4] Yassin B, Lahcen A, Zeriab ESM . Hybrid optimization procedure and application to location optimization of piezoelectric actuators and sensors for active vibration control. Applied Mathematical Modelling, 2018,62:701-716
    [5] Xu B, Ou J, Jiang J . Integrated optimization of structural topology and control for piezoelectric smart plate based on genetic algorithm. Finite Elements in Analysis and Design, 2013,64:1-12
    [6] 徐斌, 赵普猛, 黎莹 . 区间参数压电智能桁架结构/控制的多目标非概率可靠性拓扑优化. 振动工程学报, 2013,26(2):169-177
    [6] ( Xu Bin, Zhao Pumeng, Li Ying . Multi-objective optimization for structural topology and control of piezoelectric smart truss with interval parameter considering non-probability reliability constraints. Journal of Vibration Engineering, 2013,26(2):169-177 (in Chinese))
    [7] Zori? ND, Simonovi? AM, Mitrovi? ZS , et al. Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation. Journal of Intelligent Material Systems and Structures, 2013,24:499-526
    [8] Bends?e MP, Kikuchi N . Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988,71:197-224
    [9] Bends?e MP . Optimal shape design as a material distribution problem. Structural Optimization, 1989,1:193-202
    [10] Wang MY, Wang X, Guo D . A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003,192:227-246
    [11] Allaire G, Jouve F, Toader AM . Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004,194:363-393
    [12] Xie YM, Steven GP . A simple evolutionary procedure for structural optimization. Computers & Structures, 1993,49:885-896
    [13] 彭细荣, 隋允康 . 频率响应位移幅值敏度分析的伴随法. 应用力学学报, 2008,25(2):247-252, 357
    [13] ( Peng Xirong, Sui Yunkang . Sensitivity analysis for frequency response amplitude with adjoint method. Chinese Journal of Applied Mechanics, 2008,25(2):247-252, 357 (in Chinese))
    [14] 彭细荣, 隋允康 . 考虑破损——安全的连续体结构拓扑优化ICM方法. 力学学报, 2018,50(3):611-621
    [14] ( Peng Xirong, Sui Yunkang . ICM method for fail-safe topology optimization of continuum structures. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):611-621 (in Chinese))
    [15] Pedersen NL . Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization, 2000,20:2-11
    [16] 刘虎, 张卫红, 朱继宏 . 简谐力激励下结构拓扑优化与频率影响分析. 力学学报, 2013,45(3):588-597
    [16] ( Liu Hu, Zhang Weihong, Zhu Jihong . Structural topology optimization and frequency influence analysis under harmonic force excitations. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(3):588-597 (in Chinese))
    [17] Du J, Sun C . Reliability-based vibro-acoustic microstructural topology optimization. Structural and Multidisciplinary Optimization, 2017,55:1195-1215
    [18] Du J, Olhoff N . Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization, 2007,34:91-110
    [19] Rong JH, Tang ZL, Xie YM , et al. Topological optimization design of structures under random excitations using SQP method. Engineering Structures, 2013,56:2098-2106
    [20] Vicente W, Zuo Z, Pavanello R , et al. Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Computer Methods in Applied Mechanics and Engineering, 2016,301:116-136
    [21] Zhu JH, He F, Liu T , et al. Structural topology optimization under harmonic base acceleration excitations. Structural and Multidisciplinary Optimization, 2018,57:1061-1078
    [22] Gon?alves JF, De Leon DM, Perondi EA . Topology optimization of embedded piezoelectric actuators considering control spillover effects. Journal of Sound and Vibration, 2017,388:20-41
    [23] Larbi W, Deü JF, da Silva LP . Design of shunted piezoelectric patches using topology optimization for noise and vibration attenuation. Advances in Acoustics and Vibration, 2017: 23-33
    [24] Zhang X, Takezawa A, Kang Z . Topology optimization of piezoelectric smart structures for minimum energy consumption under active control. Structural and Multidisciplinary Optimization, 2018,58:185-199
    [25] Kang Z, Tong L . Integrated optimization of material layout and control voltage for piezoelectric laminated plates. Journal of Intelligent Material Systems and Structures, 2008,19:889-904
    [26] Wang Y, Luo Z, Zhang X , et al. Topological design of compliant smart structures with embedded movable actuators. Smart Materials and Structures, 2014,23:045024
    [27] Yang K, Zhu J, Wu M , et al. Integrated optimization of actuators and structural topology of piezoelectric composite structures for static shape control. Computer Methods in Applied Mechanics and Engineering, 2018,334:440-469
    [28] Yoon GH, Choi H, Hur S . Multiphysics topology optimization for piezoelectric acoustic focuser. Computer Methods in Applied Mechanics and Engineering, 2018,332:600-623
    [29] Wang Q, Wang CM . Optimal placement and size of piezoelectric patches on beams from the controllability perspective. Smart Materials and Structures, 2000,9:558
    [30] Wang Q, Wang CM . A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures. Journal of Sound and Vibration, 2001,242:507-518
    [31] Bruant I, Proslier L . Optimal location of actuators and sensors in active vibration control. Journal of Intelligent Material Systems and Structures, 2005,16:197-206
    [32] Dhuri K, Seshu P . Multi-objective optimization of piezo actuator placement and sizing using genetic algorithm. Journal of sound and vibration, 2009,323:495-514
    [33] Hu J, Zhang X, Kang Z . Layout design of piezoelectric patches in structural linear quadratic regulator optimal control using topology optimization. Journal of Intelligent Material Systems and Structures, 2018,29(10):2277-2294
    [34] Zhang X, Kang Z . Dynamic topology optimization of piezoelectric structures with active control for reducing transient response. Computer Methods in Applied Mechanics and Engineering, 2014,281:200-219
    [35] Kang BS, Park GJ, Arora JS . A review of optimization of structures subjected to transient loads. Structural and Multidisciplinary Optimization, 2006,31:81-95
    [36] Cheng G, Kang Z, Wang G . Dynamic optimization of a turbine foundation. Structural Optimization, 1997,13:244-249
    [37] Liu H, Zhang W, Gao T . A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Structural and Multidisciplinary Optimization, 2015,51:1321-1333
    [38] Zhao J, Wang C . Dynamic response topology optimization in the time domain using model reduction method. Structural and Multidisciplinary Optimization, 2016,53:101-114
    [39] Kang Z, Zhang X, Jiang S, Cheng G . On topology optimization of damping layer in shell structures under harmonic excitations. Structural and Multidisciplinary Optimization, 2012,46:51-67
    [40] Svanberg K . A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM journal on Optimization, 2002,12:555-573
    [41] Zhang X, Kang Z . Topology optimization of piezoelectric layers in plates with active vibration control. Journal of Intelligent Material Systems and Structures, 2014,25:697-71
计量
  • 文章访问数:  1510
  • HTML全文浏览量:  303
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-06
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回