EI、Scopus 收录
中文核心期刊

自由单元法及其在结构分析中的应用

高效伟, 徐兵兵, 吕军, 彭海峰

高效伟, 徐兵兵, 吕军, 彭海峰. 自由单元法及其在结构分析中的应用[J]. 力学学报, 2019, 51(3): 703-713. DOI: 10.6052/0459-1879-19-011
引用本文: 高效伟, 徐兵兵, 吕军, 彭海峰. 自由单元法及其在结构分析中的应用[J]. 力学学报, 2019, 51(3): 703-713. DOI: 10.6052/0459-1879-19-011
Xiaowei Gao, Bingbing Xu, Jun Lü, Haifeng Peng. FREE ELEMENT METHOD AND ITS APPLICATION IN STRUCTURAL ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713. DOI: 10.6052/0459-1879-19-011
Citation: Xiaowei Gao, Bingbing Xu, Jun Lü, Haifeng Peng. FREE ELEMENT METHOD AND ITS APPLICATION IN STRUCTURAL ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713. DOI: 10.6052/0459-1879-19-011
高效伟, 徐兵兵, 吕军, 彭海峰. 自由单元法及其在结构分析中的应用[J]. 力学学报, 2019, 51(3): 703-713. CSTR: 32045.14.0459-1879-19-011
引用本文: 高效伟, 徐兵兵, 吕军, 彭海峰. 自由单元法及其在结构分析中的应用[J]. 力学学报, 2019, 51(3): 703-713. CSTR: 32045.14.0459-1879-19-011
Xiaowei Gao, Bingbing Xu, Jun Lü, Haifeng Peng. FREE ELEMENT METHOD AND ITS APPLICATION IN STRUCTURAL ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713. CSTR: 32045.14.0459-1879-19-011
Citation: Xiaowei Gao, Bingbing Xu, Jun Lü, Haifeng Peng. FREE ELEMENT METHOD AND ITS APPLICATION IN STRUCTURAL ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713. CSTR: 32045.14.0459-1879-19-011

自由单元法及其在结构分析中的应用

基金项目: 1)国家自然科学基金资助项目(11672061, 11772083).
详细信息
    通讯作者:

    高效伟

  • 中图分类号: O341;

FREE ELEMENT METHOD AND ITS APPLICATION IN STRUCTURAL ANALYSIS

  • 摘要: 通过吸收有限元与无网格法的优点,提出了一种新的数值方法------自由单元法.此方法在离散方面,采用有限元法中的等参单元,表征几何形状和进行物理量的插值;在算法方面,采用单元配点技术,逐点产生系统方程.主要特点是,在每个配置点只需要一个和周围自由选择的节点而形成的一个独立的等参单元,因而不需要考虑物理量在单元之间的相互连接关系与导数连续性问题. 本文介绍强形式与弱形式两种自由单元法,前者直接由控制方程和边界条件直接产生系统方程,后者通过在自由单元上建立控制方程的加权余量式产生弱形式积分式,并通过像传统有限元法中的积分过程建立系统方程组.本文提出的方法是一种单元配点法,对于域内点为了获得较高的导数精度,需要采用至少具有一个内部点的等参单元,为此除了可使用各阶次的拉格朗日四边形单元外, 还 给出了七节点三角形等参单元,用于模拟较为复杂的几何形状问题.
    Abstract: By absorbing advantages of the finite element and meshless methods, a new numerical method, free element method, is proposed in the paper. In the discretization, the isoparametric elements as used in FEM are employed to represent the geometry and interpolate physical variables; and in the algorithm, the point collocation technique using elements is employed to generate the system of equations point by point. The main feature of the method is that only one independent element formed by freely selecting surrounding points is required for each collocation point, without need to consider the connective relationship between adjacent elements and the continuity of physical variables and their spatial derivatives at interfaces of the connected elements. Two types of free element methods, the strong-form method and weak form method, will be described in the paper. The former directly generates the system of equations from the governing equations and the Neumann boundary conditions, while the latter establishes the weak-form integral expression of the governing equations by the weighted residual technique over the free element first and then generates the system of equations through an integration process similar to that employed in the standard FEM. The method proposed in the paper is an element collocation method. To achieve highly accurate spatial derivatives for internal collocation points of the computational domain, isoparametric elements with at least one internal node are required. For this purpose, apart from the arbitrary order quadrilateral Lagrange elements, a new seven-node triangle element is constructed in the paper, which can be used to model problems with complex geometries.
  • [1] Zienkiewicz OC, Taylor RL, Zhu JZ.The Finite Element Method: its Basis and Fundamentals (Seventh Edition). Oxford: Butterworth-Heinemann, 2013: 1-20
    [2] Hughes TJR.The finite element method: Linear static and dynamic finite element analysis. Computer-Aided Civil and Infrastructure Engineering, 1989, 4(3): 245-246
    [3] Liu GR, Quek SS.The Finite Element Method: A Practical Course. 2nd ed. Oxford: Butterworth-Heinemann,2013
    [4] Bochev PB, Gunzburger MD.Least-Squares Finite Element Methods. New York, USA: Springer, 2009
    [5] Liszka T, Orkisz J.The finite difference method at arbitrary irregular grids and its application in applied mechanics. Computers & Structures,1980, 11(1): 83-95
    [6] Jensen PS.Finite difference techniques for variable grids. Comput Struct,1972, 2(1-2): 17-29
    [7] Liu GR, Zhang J, Li H, et al.Radial point interpolation based finite difference method for mechanics problems. International Journal for Numerical Methods in Engineering, 2006, 68: 728-754
    [8] Han F, Dai W.New higher-order compact finite difference schemes for 1D heat conduction equations. Applied Mathematical Modelling, 2013, 37(16-17): 7940-7952
    [9] Tao WQ, He YL, Wang QW, et al.A unified analysis on enhancing single phase convective heat transfer with field synergy principle. International Journal of Heat and Mass Transfer, 2002, 45(24): 4871-4879
    [10] Kirkpatrick MP, Armfield SW, Kent JH.A representation of curved boundaries for the solution of the Navier--Stokes equations on a staggered three-dimensional Cartesian grid. Journal of Computational Physics, 2003, 184(1): 1-36
    [11] Li J, Peterson GP, Cheng P.Dynamic characteristics of transient boiling on a square platinum microheater under millisecond pulsed heating. Int J Heat Mass Transfer, 2008, 51(1): 273-282
    [12] Brebbia CA, Telles JC, Wrobel LC. Boundary Element Techniques. Berlin: Springer, 1984
    [13] Divo E, Kassab AJ.Boundary Element Method for Heat Conduction: With Applications in Non-homogenous Media. Southampton, UK: WIT Press, 2003
    [14] Sladeka V, Sladeka J, Tanakab M, et al.Transient heat conduction in anisotropic and functionally graded media by local integral equations. Eng Anal Bound Elem, 2005, 29(11): 1047-1065
    [15] Gao XW, Peng HF, Liu J.A boundary-domain integral equation method for solving convective heat transfer problems. Int J Heat Mass Transfer, 2013, 63(3): 183-190
    [16] Liu GR, Zhang X, Chen Z, et al.An Overview on Meshfree Methods: For Computational Solid Mechanics. International Journal of Computational Methods. Computer Methods in Applied Mechanics & Engineering, 2016, 13298(5): 1630001
    [17] Zhang X, Chen Z, Liu Y.Chapter 1 - Introduction. The Material Point Method. Oxford: Academic Press, 2017: 1-9
    [18] Wang D, Wu J.An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Computer Methods in Applied Mechanics & Engineering, 2016, 298: 485-519
    [19] Wen PH, Aliabadi MH.An improved meshless collocation method for elastostatic and elastodynamic problems. Commun Numer Meth Eng, 2008, 24(8): 635-651
    [20] Haq S, Hussain A, Uddin M.RBFs meshless method of lines for the numerical solution of time-dependent nonlinear coupled partial differential equations. Applied Mathematics, 2011, 2(4): 414-423
    [21] Gao XW, Huang S, Cui M, et al.Element differential method for solving general heat conduction problems. International Journal of Heat and Mass Transfer, 2017, 115: 882-894
    [22] Gao XW, Li ZY, Yang K, et al.Element differential method and its application in thermal-mechanical problems. International Journal for Numerical Methods in Engineering, 2018, 113(1): 82-108
    [23] Gao XW.Cross-line method (CLM) for solving partial differential equations //The 8th International Conference on Computational Methods, Guilin, China: 2017
    [24] Gao XW, Gao LF, Zhang Y, et al.Free element collocation method: A new method combining advantages of finite element and mesh free methods. Computers and Structures, 2019, 215: 10-26
    [25] Gao XW, Liu HY, Xu BB, et al.Element differential method with the simplest quadrilateral and hexahedron quadratic elements for solving heat conduction problems. Numerical Heat Transfer, Part B: Fundamentals, 2018, 73: 206-224
    [26] 张国虎. 利用无网格方法分析裂纹扩展问题. [硕士论文]. 长沙: 湖南大学, 2013
    [26] (Zhang Guohu.Analysis of the creak prblems by the meshless method. [Master Thesis]. Changsha: Hunan University, 2013 (in Chinese))
    [27] Fantuzzi N.New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems. Curved and Layered Structures, 2014, 1(1): 93-126
  • 期刊类型引用(13)

    1. 丁金兴,刘华雩,高效伟. 控制体自由单元法及其在湍流燃烧中的应用. 航空学报. 2024(11): 256-265 . 百度学术
    2. 齐栋梁. 超收敛光滑再生梯度无网格配点法. 力学与实践. 2024(04): 820-829 . 百度学术
    3. 高效伟,刘华雩,崔苗,杨恺,吕军,彭海峰,阮波. 广义弱形式自由单元法. 力学学报. 2024(09): 2741-2751 . 本站查看
    4. 刘华雩,高效伟,范伟龙. 分区有限线法及其在复合结构热应力分析中的应用. 力学学报. 2023(06): 1394-1406 . 本站查看
    5. 胡明皓,王莉华. 基于拉格朗日插值的无网格直接配点法和稳定配点法. 力学学报. 2023(07): 1526-1536 . 本站查看
    6. 王富顺,池宝涛,贾志超,郭前建,袁伟. 基于自适应单元细分法的高效高精度近奇异域积分计算. 计算物理. 2023(05): 548-555 . 百度学术
    7. 胡凯,高效伟,徐兵兵,郑颖人. 多孔介质弹性问题的单元微分法. 岩土工程学报. 2023(11): 2403-2410 . 百度学术
    8. 王富顺,池宝涛,贾志超,郭前建,袁伟,李灿. 一种适用于邻近特征的非结构体网格生成方法. 机械工程学报. 2023(24): 118-130 . 百度学术
    9. 陈健 ,王东东 ,刘宇翔 ,陈俊 . 无网格动力分析的循环卷积神经网络代理模型. 力学学报. 2022(03): 732-745 . 本站查看
    10. 胡凯,高效伟,徐兵兵. 求解固体力学问题的强-弱耦合形式单元微分法. 力学学报. 2022(07): 2050-2058 . 本站查看
    11. 高效伟,丁金兴,刘华雩. 有限线法及其在流固域间耦合传热中的应用. 物理学报. 2022(19): 7-18 . 百度学术
    12. 吴俊超,吴新瑜,赵珧冰,王东东. 基于赫林格-赖斯纳变分原理的一致高效无网格本质边界条件施加方法. 力学学报. 2022(12): 3283-3296 . 本站查看
    13. 樊礼恒,王东东,刘宇翔,杜洪辉. 节点梯度光滑有限元配点法. 力学学报. 2021(02): 467-481 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  1400
  • HTML全文浏览量:  249
  • PDF下载量:  279
  • 被引次数: 22
出版历程
  • 收稿日期:  2019-01-06
  • 刊出日期:  2019-05-17

目录

    /

    返回文章
    返回