EI、Scopus 收录
中文核心期刊

大脑血液动力学现象中的能量编码

彭俊, 王如彬, 王毅泓

彭俊, 王如彬, 王毅泓. 大脑血液动力学现象中的能量编码[J]. 力学学报, 2019, 51(4): 1202-1209. DOI: 10.6052/0459-1879-19-010
引用本文: 彭俊, 王如彬, 王毅泓. 大脑血液动力学现象中的能量编码[J]. 力学学报, 2019, 51(4): 1202-1209. DOI: 10.6052/0459-1879-19-010
Peng Jun, Wang Rubin, Wang Yihong. ENERGY CODING OF HEMODYNAMIC PHENOMENA IN THE BRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1202-1209. DOI: 10.6052/0459-1879-19-010
Citation: Peng Jun, Wang Rubin, Wang Yihong. ENERGY CODING OF HEMODYNAMIC PHENOMENA IN THE BRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1202-1209. DOI: 10.6052/0459-1879-19-010
彭俊, 王如彬, 王毅泓. 大脑血液动力学现象中的能量编码[J]. 力学学报, 2019, 51(4): 1202-1209. CSTR: 32045.14.0459-1879-19-010
引用本文: 彭俊, 王如彬, 王毅泓. 大脑血液动力学现象中的能量编码[J]. 力学学报, 2019, 51(4): 1202-1209. CSTR: 32045.14.0459-1879-19-010
Peng Jun, Wang Rubin, Wang Yihong. ENERGY CODING OF HEMODYNAMIC PHENOMENA IN THE BRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1202-1209. CSTR: 32045.14.0459-1879-19-010
Citation: Peng Jun, Wang Rubin, Wang Yihong. ENERGY CODING OF HEMODYNAMIC PHENOMENA IN THE BRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1202-1209. CSTR: 32045.14.0459-1879-19-010

大脑血液动力学现象中的能量编码

基金项目: 1) 国家自然科学基金资助项目(11232005);国家自然科学基金资助项目(11472104);国家自然科学基金资助项目(11872180)
详细信息
    通讯作者:

    王如彬

  • 中图分类号: Q189

ENERGY CODING OF HEMODYNAMIC PHENOMENA IN THE BRAIN

  • 摘要: 神经信息的编码与解码是神经科学中的核心研究内容,同时又极具挑战性.传统的编码理论都具有各自的局限性,很难从脑的全局运行方式上给出有效的理论.而由于能量是一个标量具有可叠加性,因此能量编码理论可以从神经元活动的能量特征出发来研究脑功能的全局神经编码问题,取得了一系列的研究成果.本研究以王-张神经元能量计算模型为基础,构建了一个多层次结构的神经网络,通过计算机数值模拟得到了神经网络的能量消耗和血液中葡萄糖供能的变化情况.计算结果显示,和网络的神经活动达到峰值的时间相比,血液中葡萄糖的供能达到峰值的时间延迟了约5.6s.从定量的角度再现了功能性核磁共振(fMRI)中的血液动力学现象:大脑某个脑区的神经元集群被激活以后经过5~7 s的延迟,脑血流的变化才会大幅增加.模拟结果表明先前发表的由王-张神经元模型所揭示的负能量机制在控制大脑的血液动力学现象中起着核心的作用,预测了刺激条件下大脑的能量代谢与血流之间变化的本质是由神经元在发放动作电位过程中正、负能量之间的非平衡、不匹配性质所决定的.本文的研究结果为今后进一步探究血液动力学现象的生理学机制提供了新的研究方向,在神经网络的建模与计算方面给出了一个新的视角和研究方法.
    Abstract: The coding and decoding of neural information is the core research content in neuroscience, and it is also very challenging. The traditional neural coding theories have their own limitations, and they are difficult to provide effective theory from the global operation mode of the brain. Since energy is a scalar and has superposition, the theory of energy coding can study the global neural coding problem of the brain function from the prospective of energy characteristics of neuron activities, and has achieved a series of research results. Based on the Wang-Zhang neuron energy calculation model, this paper constructed a multi-level neural network, and we obtained the changes of the energy consumption of the neural network and energy supply of glucose in the blood by numerical simulation. The calculation results showed that the time of peak supply of glucose in the blood is delayed about 5.6 seconds compared to the time when the neural activity of the network reaches its peak, which reproduced hemodynamic phenomena in functional nuclear magnetic resonance (fMRI) from a quantitative perspective: after a five to seven seconds delay in the activation of a brain region, the change in cerebral blood flow increases dramatically. The simulation results showed that negative energy mechanism, which was previously reported by our group using Wang-Zhang neuronal model, played a central role in controlling the hemodynamics of the brain. Also, it predicted the neural coupling mechanism between the energy metabolism and blood flow changes in the brain under the condition of stimulation, which was determined by imbalance and mismatch between the positive and negative energy during the spike of neuronal action potentials. The research results in this paper provided a new research direction for further exploring the physiological mechanism of hemodynamic phenomena in the future, and gave a new perspective and research method in the modeling and calculation of neural networks.
  • [1] Borst A, Theunissen FE . Information theory and neural coding. Nature Neuroscience, 1999,2(11):947-957
    [2] Jafakesh S, Jahromy FZ, Daliri MR . Decoding of object categories from brain signals using cross frequency coupling methods. Biomedical Signal Processing and Control, 2016,27:60-67
    [3] Kozma R . Reflections on a giant of brain science. Cognitive Neurodynamics, 2016,10(6):457-469
    [4] 古华光 . 神经系统信息处理和异常功能的复杂动力学. 力学学报, 2017,49(2):410-420
    [4] ( Gu Huaguang . Complex dynamics of the nervous system for information processing and abnormal functions. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):410-420(in Chinese))
    [5] Jacobs AL, Fridman G, Douglas RM , et al. Ruling out and ruling in neural codes. Proceedings of the National Academy of Sciences, 2009,106(14):5936-5941
    [6] Purushothanman G, Bradley DC . Neural population code for fine perceptual decisions in area MT. Nature Neuroscience, 2005,8(1):99-106
    [7] Tozzi A, Peters JF . From abstract topology to real thermodynamic brain activity. Cognitive Neurodynamics, 2017,11(3):283-292
    [8] Abbott LF . Theoretical Neuroscience Rising. Neuron, 2008,60(3):489-495
    [9] Braga RM, Sharp DJ, Leeson C , et al. Echoes of the brain within default mode, association, and heteromodal cortices. Journal of Neuroscience, 2013,33(35):14031-14039
    [10] Laughlin SB . Communication in neuronal networks. Science, 2003,301(5641):1870-1874
    [11] Wang RB, Tsuda I, Zhang ZK . A new work mechanism on neuronal activity. International Journal of Neural Systems, 2015,25(3):1450037
    [12] Wang ZY, Wang RB . Energy distribution property and energy coding of a structural neural network. Frontiers in Computational Neuroscience, 2014,
    [13] Wang RB, Wang ZY, Zhu ZY . The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dynamics, 2018,
    [14] Wang ZY, Wang RB, Fang RY . Energy coding in neural network with inhibitory neurons. Cognitive Neurodynamics, 2015,9(2):129-144
    [15] Wang RB, Zhang ZK, Chen GR . Energy function and energy evolution on neural populations. IEEE Transactions on Neural Networks, 2008,19(3):535-538
    [16] Zhu ZY, Wang RB, Zhu FY . The energy coding of a structural neural network based on the Hodgkin-Huxley model. Frontiers in Neuroscience, 2008,
    [17] Hyder F, Rothman DL, Shulman RG . Total neuroenergetics support localized brain activity: Implications for the interpretation of fMRI. Proceedings of the National Academy of Sciences, 2002,99(16):10771-10776
    [18] Smith AJ, Blumenfeld H, Behar KL , et al. Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI. Proceedings of the National Academy of Sciences, 2002,99(16):10765-10770
    [19] Raichle ME, Gusnard DA . Appraising the brain's energy budget. Proceedings of the National Academy of Sciences, 2002,99(16):10237-10239
    [20] Laughlin SB . Energy as a constraint on the coding and processing of sensory information. Current Opinion in Neurobiology, 2001,11(4):475-480
    [21] Crotty P, Levy WB . Energy-efficient interspike interval codes. Neurocomputing, 2005,66:371-378
    [22] Fox MD, Raichle ME . Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 2007,8(9):700-711
    [23] Parhizi B, Daliri MR, Behroozi M . Decoding the different states of visual attention using functional and effective connectivity features in fMRI data. Cognitive Neurodynamics, 2018,12(2):157-170
    [24] Buxton RB, Uluda? K, Dubowitz DJ , et al. Modeling the hemodynamic response to brain activation. Neuroimage, 2004,23:S220-S233
    [25] Amaro E, Barker GJ . Study design in fMRI: Basic principles. Brain and Cognition, 2006,60(3):220-232
    [26] Zhu FY, Wang RB, Pan XC , et al. Energy expenditure computation of a single bursting neuron. Cognitive Neurodynamics, 2018,
    [27] Wang GZ, Wang RB, Kong WZ , et al. Simulation of retinal ganglion cell response using fast independent component analysis. Cognitive Neurodynamics, 2018,
    [28] Wang RB, Zhu YT . Can the activities of the large scale cortical network be expressed by neural energy? A brief review. Cognitive Neurodynamics, 2016,10(1):1-5
    [29] Zheng HW, Wang RB, Qu JY . Effect of different glucose supply conditions on neuronal energy metabolism. Cognitive Neurodynamics, 2016,10(6):563-571
    [30] Gravier A, Chai Q, Duch W , et al. Neural network modelling of the influence of channelopathies on reflex visual attention. Cognitive Neurodynamics, 2016,10(1):49-72
    [31] 寿天德 . 视觉信息处理的脑机制. 合肥: 中国科学技术大学出版社, 2010
    [31] ( Shou Tiande. The Brain Mechanism of Visual Information Processing. Hefei: China Science and Technology University Press, 2010(in Chinese))
    [32] 李帅, 周继磊, 任传波 等. 时变参数时滞减振控制研究. 力学学报, 2018,50(1):99-108
    [32] ( Li Shuai, Zhou Jilei, Ren Chuanbo , et al. The research of time delay vibration control with time - varying parameters. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):99-108(in Chinese))
    [33] Rubinov M, Sporns O, Thivierge JP , et al. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Computational Biology, 2011,7(6):e1002038
    [34] Wennekers T, Palm G . Syntactic sequencing in Hebbian cell assemblies. Cognitive Neurodynamics, 2009,3(4):429-441
    [35] Van QY, Michel L, Martinerie J , et al. Characterizing neurodynamic changes before seizures. Journal of Clinical Neurophysiology, 2001,18(3):191-208
    [36] Lin AL, Fox PT, Hardies J , et al. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proceedings of the National Academy of Sciences, 2010,107(18):8446-8451
    [37] 唐元梁, 贺缨 . 内皮调节对小动脉管腔运动影响的模型分析. 力学学报, 2017,49(1):182-190
    [37] ( Tang Yuanliang, He Ying . Model analysis of endothelium-dependent vasomotion of small artery. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):182-190(in Chinese))
    [38] Wang YH, Wang RB, Zhu YT . Optimal path-finding through mental exploration based on neural energy field gradients. Cognitive Neurodynamics, 2017,11(1):99-111
    [39] Hipp JF, Engel AK, Siegel M . Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron, 2011,69(2):387-396
    [40] Welberg L . Oscillations networking improves performance. Nature Reviews Neuroscience, 2011,12(3):121
    [41] Moore CI, Cao R . The Hemo-Neural hypothesis: On the role of blood flow in information processing. Journal of Neurophysiology, 2008,99(5):2035-2047
    [42] Mizraji E, Lin J . The feeling of understanding: An exploration with neural models. Cognitive Neurodynamics, 2017,11(2):135-146
  • 期刊类型引用(5)

    1. 李朵,李斯卉,李强,张瑞. 面向癫痫的神经元微环境动力学建模方法. 生物化学与生物物理进展. 2024(08): 1860-1872 . 百度学术
    2. 韩芳,王青云. 神经动力学研究进展和若干思考. 力学学报. 2023(04): 805-813 . 本站查看
    3. 安新磊,张莉. 一类忆阻神经元的电活动多模振荡及Hamilton能量反馈控制. 力学学报. 2020(04): 1174-1188 . 本站查看
    4. 王如彬,王毅泓,徐旭颖,潘晓川. 认知神经科学中蕴藏的力学思想与应用. 力学进展. 2020(00): 450-505 . 百度学术
    5. 马新东,姜文安,张晓芳,韩修静,毕勤胜. 一类三维非线性系统的复杂簇发振荡行为及其机理. 力学学报. 2020(06): 1789-1799 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  2578
  • HTML全文浏览量:  649
  • PDF下载量:  145
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-01-06
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回