EI、Scopus 收录
中文核心期刊

基于VPM-THINC/QQ模型的波浪高保真模拟

聂隆锋, 赵西增, 张志杭, 童晨奕, 王辰

聂隆锋, 赵西增, 张志杭, 童晨奕, 王辰. 基于VPM-THINC/QQ模型的波浪高保真模拟[J]. 力学学报, 2019, 51(4): 1043-1053. DOI: 10.6052/0459-1879-18-454
引用本文: 聂隆锋, 赵西增, 张志杭, 童晨奕, 王辰. 基于VPM-THINC/QQ模型的波浪高保真模拟[J]. 力学学报, 2019, 51(4): 1043-1053. DOI: 10.6052/0459-1879-18-454
Nie Longfeng, Zhao Xizeng, Zhang Zhihang, Tong Chenyi, Wang Chen. HIGH-FIDELITY SIMULATION OF WAVE PROPAGATION BASED ON VPM-THINC/QQ MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1043-1053. DOI: 10.6052/0459-1879-18-454
Citation: Nie Longfeng, Zhao Xizeng, Zhang Zhihang, Tong Chenyi, Wang Chen. HIGH-FIDELITY SIMULATION OF WAVE PROPAGATION BASED ON VPM-THINC/QQ MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1043-1053. DOI: 10.6052/0459-1879-18-454
聂隆锋, 赵西增, 张志杭, 童晨奕, 王辰. 基于VPM-THINC/QQ模型的波浪高保真模拟[J]. 力学学报, 2019, 51(4): 1043-1053. CSTR: 32045.14.0459-1879-18-454
引用本文: 聂隆锋, 赵西增, 张志杭, 童晨奕, 王辰. 基于VPM-THINC/QQ模型的波浪高保真模拟[J]. 力学学报, 2019, 51(4): 1043-1053. CSTR: 32045.14.0459-1879-18-454
Nie Longfeng, Zhao Xizeng, Zhang Zhihang, Tong Chenyi, Wang Chen. HIGH-FIDELITY SIMULATION OF WAVE PROPAGATION BASED ON VPM-THINC/QQ MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1043-1053. CSTR: 32045.14.0459-1879-18-454
Citation: Nie Longfeng, Zhao Xizeng, Zhang Zhihang, Tong Chenyi, Wang Chen. HIGH-FIDELITY SIMULATION OF WAVE PROPAGATION BASED ON VPM-THINC/QQ MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1043-1053. CSTR: 32045.14.0459-1879-18-454

基于VPM-THINC/QQ模型的波浪高保真模拟

基金项目: 1) 国家自然科学基金(51679212);浙江省杰出青年基金(LR16E090002)
详细信息
    通讯作者:

    赵西增

  • 中图分类号: O353

HIGH-FIDELITY SIMULATION OF WAVE PROPAGATION BASED ON VPM-THINC/QQ MODEL

  • 摘要: 为实现波浪传播的高保真数值模拟,采用包含单元均值和点值(volume-average/point-value method,VPM)的有限体积法求解纳维-斯托克斯方程和具有二次曲面性质和高斯积分的双曲正切函数(THINC method with quadratic surface representation and Gaussian quadrature,THINC/QQ)方法来重构自由面,建立以开源求解库OpenFOAM底层函数库为基础的VPM-THINC/QQ模型. 在本模型中添加推板造波法实现波浪的产生功能,采用松弛法实现消波功能,构建高精度黏性流数值波浪水槽. 分别采用VPM-THINC/QQ模型和InterFoam求解器(OpenFOAM软件包中广泛使用的多相流求解器)开展规则波的数值模拟,重点探究网格大小和时间步长等因素对波浪传播过程的影响,定量地分析波高衰减程度;为验证本模型的适应性,对长短波进行模拟. 结果表明,在相同网格大小或时间步长条件下,VPM-THINC/QQ模型的预测结果与参考值吻合较好,波高衰减较少,且无相位差,在波浪传播过程的模拟中呈现出良好的保真性. 本文工作 为波浪传播的模拟研究提供了一种高精度的黏性数值波浪水槽模型.
    Abstract: In order to achieve high-fidelity of numerical simulation of wave propagation, an improved finite volume method with volume-average and point-value (VPM) is used to solve the Navier-Stokes equation and the tangent of hyperbola for interface capturing with quadratic surface representation and Gaussian quadrature reconstructs the free surface. The VPM-THINC/QQ model based on OpenFOAM underlying function library is established. The piston wave-making method is added to the current model to realize the wave generation, and the relaxation method is used to realize the wave dissipation. A high-precision viscous numerical wave water tank is built. The numerical simulation of regular waves is carried out by using VPM-THINC/QQ model and interFoam solver (multiphase solver widely used in OpenFOAM software packages) respectively. The effects of grid size and time step on the wave propagation process are investigated mainly. The attenuation degree of wave height is quantitatively compared and analyzed. In order to verify the adaptability of the current model, simulation of long and short waves is carried out. The results show that under the same grid size or time step, the prediction results of the VPM-THINC/QQ model agree well with the theoretical solution compared with the interFoam solver. The wave height has little attenuation and there is no phase difference. It shows high-fidelity of the VPM-THINC/QQ model in the wave propagation process. A high-precision model of viscous numerical wave tank is provided for studying the wave propagation process in this work.
  • [1] 刘俊, 林皋, 李建波 . 波浪与外圆弧开孔壁双圆筒柱的相互作用. 力学学报, 2012,44(1):174-178
    [1] ( Liu Jun, Lin Gao, Li Jianbo . Wave interaction with double-cylinder structurer with arc-shaped porous outer wall. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(1):174-178 (in Chinese))
    [2] 李玉成, 滕斌 . 波浪对海上建筑物的作用. 第3版. 北京: 海洋出版社, 2015
    [2] ( Li Yucheng, Teng Bin. Wave Action on Maritime Structures. 3rd Edition. Beijing: China Ocean Press, 2015 (in Chinese))
    [3] 唐军, 沈永明, 崔雷 等. 随机波浪作用下近岸波流场的数值模拟. 力学学报, 2008,40(4):455-463
    [3] ( Tang Jun, Shen Yongming, Cui Lei et al. Numerical simulation of random wave-induced near-shore currents. Chinese Journal of Theoretical and Applied Mechanics, 2008,40(4):455-463 (in Chinese))
    [4] 张景新, 刘桦 . 潜堤对波浪在直立式防浪墙上爬高的影响. 力学学报, 2009,41(5):660-665
    [4] ( Zhang Jingxin, Liu Hua . Wave run-up on a vertical wall protected by a submerged breakwater. Chinese Journal of Theoretical and Applied Mechanics, 2009,41(5):660-665 (in Chinese))
    [5] 李翔, 张崇伟, 宁德志 等. 非周期波浪与直墙作用的非线性数值研究. 力学学报, 2017,49(5):1042-1049
    [5] ( Li Xiang, Zhang Chongwei, Ning Dezhi , et al. Nonlinear numerical study of non-periodic waves acting on a vertical cliff. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1042-1049 (in Chinese))
    [6] 巴迪 MM, 卢东强 . Plotnikov-Toland板模型中水弹性孤立波的迎撞. 力学学报, 2018,50(6):1406-1417
    [6] ( Bhatti MM, Lu Dongqiang . Head-on collision between two hydroelastic solitary waves with Plotnikov-Toland's plate model. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1406-1417 (in Chinese))
    [7] Booij N, Ris RC, Holthuijsen LH . A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 1999,104(C4):7649-7666
    [8] Rogers WE, Kaihatu JM, Hsu L , et al. Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coastal Engineering, 2007,54(1):1-15
    [9] Xu F, Perrie W, Toulany B , et al. Wind-generated waves in Hurricane Juan. Ocean Modelling, 2007,16(3-4):188-205
    [10] Madsen PA, Murray R, S?rensen OR . A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 1991,15(4):371-388
    [11] Nwogu O . Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993,119(6):618-638
    [12] Kirby JT, Dalrymple RA . A parabolic equation for the combined refraction-diffraction of stokes waves by mildly varying topography. Journal of Fluid Mechanics, 1983,136:453-466
    [13] Madsen PA, Bingham HB, Liu H . A new Boussinesq method for fully nonlinear waves from shallow to deep water. Journal of Fluid Mechanics, 2002,462:1-30
    [14] Dommermuth DG, Yue DK, Lin W , et al. Deep-water plunging breakers: A comparison between potential theory and experiments. Journal of Fluid Mechanics, 1988,189:423-442
    [15] Grilli ST, Subramanya R, Svendsen IA , et al. Shoaling of solitary waves on plane beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1994,120(6):609-628
    [16] Park J, Uno Y, Sato T , et al. Numerical reproduction of fully nonlinear multi-directional waves by a viscous 3D numerical wave tank. Ocean Engineering, 2004,31(11-12):1549-1565
    [17] Lin P, Liu PLF . A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 1998,359:239-264
    [18] Lin P, Xu W . Newflume: A numerical water flume for two-dimensional turbulent free surface flows. Journal of Hydraulic Research, 2006,44(1):79-93
    [19] 王年华, 李明, 张来平 . 非结构网格二阶有限体积法中黏性通量离散格式精度分析与改进. 力学学报, 2018,50(3):527-537
    [19] ( Wang Nianhua, Li Ming, Zhang Laiping . Accuracy analysis and improvement of viscous flux schemes in unstructured second-order finite-volume discretization. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):527-537 (in Chinese))
    [20] Jacobsen NG, Fuhrman DR, Freds?e J . A wave generation toolbox for the open-source CFD library: OpenFOAM. International Journal for Numerical Methods in Fluids, 2012,70(9):1073-1088
    [21] Higuera P, Lara JL, Losada IJ . Realistic wave generation and active wave absorption for Navier-Stokes models: Application to OpenFOAM. Coastal Engineering, 2013,71:102-118
    [22] Higuera P, Lara JL, Losada IJ . Simulating coastal engineering processes with OpenFOAM. Coastal Engineering, 2013,71:119-134
    [23] 查晶晶, 万德成 . 用OpenFOAM实现数值水池造波和消波. 海洋工程, 2011,29(3):1-12
    [23] ( Cha Jingjing, Wan Decheng . Numerical wave generation and absorption based on OpenFOAM. The Ocean Engineering, 2011,32(4):244-251 (in Chinese))
    [24] Larsen BE, Fuhrman DR . Performance of interFoam on the simulation of progressive waves. Coastal Engineering Journal, 2019, 1-21
    [25] Hu ZZ, Greaves D, Raby A . Numerical wave tank study of extreme waves and wave-structure interaction using OpenFoam. Ocean Engineering, 2016,126:329-342
    [26] Xie B, Ii S, Ikebata A , et al. A multi-moment finite volume method for incompressible Navier-Stokes equations on unstructured grids: Volume-average/point-value formulation. Journal of Computational Physics, 2014,277(C):138-162
    [27] Xie B, Jin P, Xiao F . An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method. International Journal of Multiphase Flow, 2017,89:375-398
    [28] Xie B, Xiao F . Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature. Journal of Computational Physics, 2017,349:415-440
    [29] Li JX, Liu SX, Hong QY . Numerical study of two-dimensional focusing waves. China Ocean Engineering, 2008,22(2):253-266
    [30] 谷汉斌, 陈汉宝, 栾英妮 等. 平推式造波板运动的数值模拟. 水道港口, 2011,32(4):244-251
    [30] ( Gu Hanbing, Chen Hanbao, Luan Yingning , et al. Piston wave-maker motion by numerical method. Journal of Waterway and Harbor, 2011,32(4):244-251 (in Chinese))
    [31] Miquel AM, Kamath A, Alagan Chella M . et al. Analysis of different methods for wave generation and absorption in a cfd-based numerical wave tank. Journal of Marine Science and Engineering, 2018,6(2):1-21
    [32] Dean R, Dalrymple R . Water wave mechanics for engineers and scientists. New Jersey, USA: Prentice-Hall Inc., 1984
  • 期刊类型引用(8)

    1. 陈静,柯世堂,李文杰,朱庭瑞,员亦雯,任贺贺. 浅海风-浪-流-海床耦合场非定常时空演化规律及评价指标. 上海交通大学学报. 2023(06): 666-679 . 百度学术
    2. 李晓东,吴乘胜,王星. 船舶航行兴波CFD模拟的代数型VOF方法研究. 水动力学研究与进展A辑. 2022(02): 252-261 . 百度学术
    3. 赵西增,徐天宇,谢玉林,吕超凡,姚炎明,解静,常江. 基于卷积神经网络的涵洞式直立堤波浪透射预测. 力学学报. 2021(02): 330-338 . 本站查看
    4. 郭权势,邓争志,王晓亮,程鹏达. 垂荡双气室振荡水柱波能装置水动力特性研究. 力学学报. 2021(09): 2515-2527 . 本站查看
    5. 吕超凡,赵西增,殷铭简. 波浪作用下涵洞式直立堤水体交换特性研究. 海洋工程. 2021(05): 39-49 . 百度学术
    6. 柯世堂,王硕,张伟,王岩,王同光. 风、浪、流多场耦合作用波浪传播演化机理对比分析. 哈尔滨工程大学学报. 2021(09): 1312-1320 . 百度学术
    7. 赵西增,聂隆锋,殷铭简. 一种高保真超长黏性数值波浪水槽. 水动力学研究与进展(A辑). 2020(01): 23-30 . 百度学术
    8. 赵海洋,明平剑,张文平,齐文亮. 基于THINC/QQ格式的两相界面流动数值模拟. 哈尔滨工程大学学报. 2020(12): 1804-1810 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1781
  • HTML全文浏览量:  318
  • PDF下载量:  103
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-12-27
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回