EI、Scopus 收录
中文核心期刊

一种基于黎曼解处理大密度比多相流SPH的改进算法

杨秋足, 徐绯, 王璐, 杨扬

杨秋足, 徐绯, 王璐, 杨扬. 一种基于黎曼解处理大密度比多相流SPH的改进算法[J]. 力学学报, 2019, 51(3): 730-742. DOI: 10.6052/0459-1879-18-451
引用本文: 杨秋足, 徐绯, 王璐, 杨扬. 一种基于黎曼解处理大密度比多相流SPH的改进算法[J]. 力学学报, 2019, 51(3): 730-742. DOI: 10.6052/0459-1879-18-451
Qiuzu Yang, Fei Xu, Lu Wang, Yang Yang. AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 730-742. DOI: 10.6052/0459-1879-18-451
Citation: Qiuzu Yang, Fei Xu, Lu Wang, Yang Yang. AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 730-742. DOI: 10.6052/0459-1879-18-451
杨秋足, 徐绯, 王璐, 杨扬. 一种基于黎曼解处理大密度比多相流SPH的改进算法[J]. 力学学报, 2019, 51(3): 730-742. CSTR: 32045.14.0459-1879-18-451
引用本文: 杨秋足, 徐绯, 王璐, 杨扬. 一种基于黎曼解处理大密度比多相流SPH的改进算法[J]. 力学学报, 2019, 51(3): 730-742. CSTR: 32045.14.0459-1879-18-451
Qiuzu Yang, Fei Xu, Lu Wang, Yang Yang. AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 730-742. CSTR: 32045.14.0459-1879-18-451
Citation: Qiuzu Yang, Fei Xu, Lu Wang, Yang Yang. AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 730-742. CSTR: 32045.14.0459-1879-18-451

一种基于黎曼解处理大密度比多相流SPH的改进算法

基金项目: 1) 国家自然科学基金(青年基金)资助项目(11702220).
详细信息
    通讯作者:

    徐绯,杨扬

    徐绯,杨扬

  • 中图分类号: O359;

AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION

  • 摘要: 多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothedparticle hydrodynamics,SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh--Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.
    Abstract: The discontinuities of physical fields (such as density, viscosity and so on) exist in the different phase interface of multiphase flow problems, and the numerical simulation method using the traditional SPH model is liable to cause spurious~oscillations in the pressure and velocity field at the interface, which is a big problem in the application of multiphase flows. An improved SPH model based on Riemann solution on dealing with the abrupt physical quantities of multiphase flows with large density radios is presented. Using the advantage of Riemann solution in dealing with the contact discontinuity problems, we introduce it into the SPH multiphase flow model. For the sake of accurately calculating the physical viscosity of multiphase fluid and decreasing the Riemann dissipation, the SPH momentum equation of the Riemann solution form is improved. In the new model, we combine the Adami fixed particle wall-boundary with the one-sided Riemann problem to impose solid boundary of the SPH multiphase flow, and consider the influence of the surface tension on the small-scale interface. The new model without adding any artificial viscosity, artificial dissipation and non-physical treatment technology can simulate the real physical viscousity and the physical evolution process of multiphase flow problems. In order to verify the ability of the improved model in dealing with the multiphase flow problems with the discontinuous interface and the convergence of the model particle spacing, firstly the squared droplet oscillating problem is simulated under different discrete particle spacing. Afterwards, the multiphase flow problems of the Rayleigh-Taylor instability, the single bubble buoyancy and the double bubble buoyancy are simulated. The interface is clearly capture and the results are good in agreement with the literature, which proved that the improved multiphase flow SPH model can stably and effectively deal with the problems of the multiphase flow large with density ratio and large viscosity ratio.
  • [1] 欧阳伟平, 张冕, 孙虎. 井筒气液两相流对致密气压裂水平井试井的影响. 力学学报, 2016, 48(2): 464-472
    [1] (Ouyang Weiping, Zhang Mian, Sun Hu.Effect of wellbore gas-liquid two-phase flow on well test of fractured horizontal wells in tight gas reservoir. Chinese Journal of Theoretical and Applied, 2016, 48(2) : 464-472 (in Chinese))
    [2] Jin ZY, Yin CY, Chen Y, et al.Coupling Runge-Kutta discontinuous Galerkin method to finite element method for compressible multi-phase flow interacting with a deformable sandwich structure. Ocean Engineering, 2017, 130: 597-610
    [3] 徐绯, 任选其, 李亚南等. 积水跑道飞机翻边轮胎溅水机理研究. 西北工业大学学报, 2017, 35(4): 615-621
    [3] (Xu Fei, Ren Xuanqi, ~Li Yanan, et al. Mechanism of water spray generated by aircraft chine tire running on wet runway. Journal of Northwestern Polytechnical University, 2017, 35(4): 615-621 (in Chinese))
    [4] 杜特专, 王一伟, 黄晨光等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(4): 782-792
    [4] (Du Tezhuan, Wang Yiwei, Huang Chenguang, et al.Study on coupling effects of underwater launched vehicle. Chinese Journal of Theoretical and Applied, 2017, 49(4): 782-792 (in Chinese))
    [5] Croce R, Griebel M, Schweitzer MA.Numerical, simulation of bubble and droplet deformation by a level set approach with surface tension. International Journal for Numerical Methods in Fluids, 2010, 62(9): 963-993
    [6] 刘双兵, 刘海湖. 亚网格尺度稳定化有限元求解不可压黏性流动. 力学学报, 2011, 43(6): 1083-1090
    [6] (Liu Shuangbing, Liu Haihu.Subgrid scale stabilized finite element for solution of incompressible viscous flows. Chinese Journal of Theoretical and Applied, 2011, 43(6): 1083-1090 (in Chinese))
    [7] 吕宏强, 张涛, 孙强等. 间断伽辽金方法在可压缩流数值模拟中的应用研究综述. 空气动力学学报, 2017, 35(4): 455-471
    [7] (Lü Hongqiang,Zhang Tao,Sun Qiang, et al.Applications of discontinuous Galerkin method in numerical simulations of compressible flows: A review. Acta Aerodynamica Sinica, 2017, 35(4): 455-471 (in Chinese))
    [8] 李聪洲, 张新曙, 胡晓峰等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(2): 233-243
    [8] (Li Congzhou, Zhang Xinshu, Hu Xiaofeng, et al.The Study of flow past multiple cylinders at high Reynolds numbers. Chinese Journal of Theoretical and Applied, 2018, 50(2): 233-243 (in Chinese))
    [9] 及春宁, 花阳, 许栋等. 不同剪切率来流作用下柔性圆柱涡激振动数值模拟. 力学学报, 2018, 50(1): 21-31
    [9] (Numerical simulation of vortex-induced vibration of a flexible cylinder exposed to shear flow at different shear rates. Chinese Journal of Theoretical and Applied, 2018, 50(1): 21-31 (in Chinese))
    [10] 程志林, 宁正福, 曾彦等. 格子Boltzmann方法模拟多孔介质惯性流的边界条件改进. 力学学报, 2019, 51(1): 124-134
    [10] (Cheng Zhilin, Ning Zhengfu, Zeng Yan, et al.A lattice boltzmann simulation of fluid flowin porous media using a modified boundary condition. Chinese Journal of Theoretical and Applied, 2019, 51(1): 124-134 (in Chinese))
    [11] 袁国强, 李颖晖. 二维稳定流形的自适应推进算法. 力学学报, 2018, 50(2): 405-414
    [11] (Yuan Guoqiang, Li Yinghui.Adaptive front advancing algorithm for computing two-dimensional stable manifolds. Chinese Journal of Theoretical and Applied, 2018, 50(2): 405-414 (in Chinese))
    [12] 何涛. 基于ALE有限元法的流固耦合强耦合数值模拟. 力学学报, 2018, 39(2): 1549-1561
    [12] (He Tao.A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary Lagrangian-Eulerian finite element formulation. Chinese Journal of Theoretical and Applied, 2018, 39(2): 1549-1561 (in Chinese))
    [13] 张雄, 刘岩. 无网格法. 北京:清华大学出版社, 2004
    [13] (Zhang Xiong, Liu Yan. Meshless Method.Beijing: Tsinghua University Press, 2004 (in Chinese))
    [14] 潘徐杰, 张怀新, 孙学尧. 基于大涡模拟的移动粒子半隐式法研究. 力学学报, 2011, 43(3): 616-620
    [14] (Pan Xujie, Zhang Huaixin, Sun Xueyao.Moving-particle semi-implicit method research based on large eddy simulation. Chinese Journal of Theoretical and Applied, 2011, 43(3): 616-620 (in Chinese))
    [15] 刘硕, 方国东, 王兵等.近场动力学与有限元方法耦合求解热传导问题.力学学报,2018,50(2): 339-348
    [15] (Liu Shuo, Fang Guodong, Wang Bing, et al.Study of thermal conduction problem using coupled peridynamics and finite element method. Chinese Journal of Theoretical and Applied, 2018, 50(2): 339-348 (in Chinese))
    [16] 朱跃, 姜胜耀, 杨星团等. 粒子法中压力振荡的机理研究. 力学学报, 2018, 50(3): 688-698
    [16] (Zhu Yue, Jiang Shengyao, Yang Xingtuan, et al.Mechanism analysis of pressure oscillation in particle method. Chinese Journal of Theoretical and Applied, 2018, 50(3): 688-698 (in Chinese))
    [17] Monaghan JJ, Kocharyan A .SPH simulation of multi-phase flow. Computer Physics Communications, 1995, 87(1-2): 225-235
    [18] Liu GR, Liu MB .Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76
    [19] 闫蕊, 徐绯, 任选其. SPH方法研究空气在平板入水中的影响. 计算力学学报, 2017, 34(5): 564-569
    [19] (Yan Rui, Xu Fei, Ren Xuanqi.Research on the effects of air during flat plate impacting with water using SPH method. Chinese Journal of Computational Mechanics, 2017, 34(5): 564-569 (in Chinese))
    [20] Zhang AM, Sun PN, Ming FR, et al.Smoothed particle hydrodynamics and its applications in fluid-structure interactions. Journal of Hydrodynamics, 2017, 29(2): 187-216
    [21] Ritchie BW, Thomas PA.Multiphase smoothed-particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2010, 323(3): 743-756
    [22] Colagrossi A, Landrini M.Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 2003, 191(2): 448-475
    [23] Colagrossi A, Antuono M, Grenier N, et al. Simulation of interfacial and free-surface flows using a new SPH formulation//3rd ERCOFTAC SPHERIC Workshop on SPH Applications, 2008, Lausanne, Switzerland
    [24] Flebbe O, Muenzel S, Herold H, et al.Smoothed Particle Hydrodynamics: Physical viscosity and the simulation of accretion disks. Astrophysical Journal, 1994, 431(2): 754-760
    [25] Grenier N, Antuono M, Colagrossi A, et al.An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational Physics, 2009, 228(22): 8380-8393
    [26] Adami S, Hu XY, Adams NA.A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. Journal of Computational Physics, 2010, 229(13): 5011-5021
    [27] Monaghan JJ, Rafiee A.A simple SPH algorithm for multi-fluid flow with high density ratios. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561
    [28] Chen Z, Zong Z, Liu MB, et al.An SPH model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, 2015, 283: 169-188
    [29] Lind SJ, Stansby PK, Rogers BD.Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics(SPH). Journal of Computational Physics, 2016, 309: 129-147
    [30] Wan H, Li R, Pu X, et al.Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model. International Journal of Computational Fluid Dynamics, 2018, 31(4): 1-15
    [31] Kruisbrink ACH, Pearce FR, Yue T, et al.An SPH multi-fluid model based on quasi-buoyancy for interface stabilization up to high density ratios and realistic wave speed ratios. International Journal for Numerical Methods in Fluids, 2018, 84: 487-507[32] Rezavand M, Taeibi-Rahni M, Rauch W. An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios. Computers & Mathematics with Applications, 2018, 75(8): 2658-2677
    [33] Inutsuka S.Godunov-type SPH. Memorie Della Societa Astronomica Italiana, 1994, 65: 1027
    [34] Monaghan JJ.SPH and Riemann Solvers. Journal of Computational Physics, 1997, 136(2): 298-307
    [35] Parshikov AN.Application of the Riemann problem to the SPH method. Computational Methematics and Methematical Physics, 1999, 39(7): 1173-1182
    [36] Sirotkin FV, Yoh JJ .A smoothed particle hydrodynamics method with approximate Riemann solvers for simulation of strong explosions. Computers & Fluids, 2013, 88(12): 418-429
    [37] Rogers D, Dalrymple A, Stansby K.Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research, 2010, 48: 135-141
    [38] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701
    [38] (Sun Pengnan, Li Yunbo, Ming Furen.Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701 (in Chinese))
    [39] Wendland H.Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 1995, 4(1): 389-396
    [40] Zhang C, Hu XY.A weakly compressible SPH method based on a low-dissipation Riemann solver. Journal of Computational Physics, 2017, 335: 605-620
    [41] Adami S, Hu XY, Adams NA.A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 2012, 231(21): 7057-7075
    [42] Morris JP .Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333-353
    [43] 杨秀峰, 刘谋斌. 瑞利--泰勒不稳定问题的光滑粒子法(SPH)模拟研. 物理学报, 2017, 66(19): 164701
    [43] (Yang Xiufeng, Liu Moubin.Numerical study of Rayleigh-Taylor instability by usingsmoothed particle hydrodynamics. Acta Physica Sinica, 2017, 66(16): 164701(in Chinese))
    [44] Dalziel S.Toy models for Rayleigh Taylor instability. 8th International Workshop on the Physics of Compressible Turbulent Mixing, Lawrence Livermore National Laboratory, UCRL-MI-146350, 2001
  • 期刊类型引用(12)

    1. 刘家齐,焦培刚,许云涛. 基于SPH方法的围油栏仿真研究. 山东交通学院学报. 2024(01): 116-123 . 百度学术
    2. 陈丁,黄文雄,黄丹. 光滑粒子法中的摩擦接触算法及其在含界面土体变形问题中的应用. 岩土力学. 2024(03): 885-894 . 百度学术
    3. 徐义祥,杨刚,邢钰林,胡德安. 上浮气泡与自由表面相互作用的ISPH-FVM耦合方法模拟. 力学学报. 2024(05): 1261-1270 . 本站查看
    4. 李宏岩,霍晔,孙臻,张煜,于洋,冯杨,赵岗. 基于黎曼求解器的SPH算法及其应用. 智能计算机与应用. 2024(08): 98-101 . 百度学术
    5. 张志军,高奕珏. 基于SPH算法的深松铲破坏土壤仿真模型. 计算机仿真. 2023(04): 290-294 . 百度学术
    6. 黄晓婷,孙鹏楠,吕鸿冠,钟诗蕴. 基于修正光滑粒子流体动力学算法的低能量耗散数值波浪水池开发. 力学学报. 2022(06): 1502-1515 . 本站查看
    7. 黄晓婷,孙鹏楠,吕鸿冠,殷晓瑞,董嘉徐. 翼型绕流的多级分辨率光滑粒子流体动力学数值模拟研究. 西北工业大学学报. 2022(03): 661-669 . 百度学术
    8. 王平平,张阿漫,彭玉祥,孟子飞. 近场水下爆炸瞬态强非线性流固耦合无网格数值模拟研究. 力学学报. 2022(08): 2194-2209 . 本站查看
    9. 王璐,徐绯,杨扬. 完全拉格朗日SPH在冲击问题中的改进和应用. 力学学报. 2022(12): 3297-3309 . 本站查看
    10. 王平平,张阿漫,孟子飞. 一种改进的适用于多相流SPH模拟的粒子位移修正算法. 科学通报. 2020(08): 729-739 . 百度学术
    11. 黄灿,刘青泉,王晓亮. 梯级溃坝洪水洪峰增强机制. 力学学报. 2020(03): 645-655 . 本站查看
    12. 朱晓临,周韵若,何红虹. 修正压力与表面张力计算的两相流自由界面运动模拟. 图学学报. 2020(06): 970-979 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1657
  • HTML全文浏览量:  219
  • PDF下载量:  277
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-12-27
  • 刊出日期:  2019-05-17

目录

    /

    返回文章
    返回