[1] | 欧阳伟平, 张冕, 孙虎. 井筒气液两相流对致密气压裂水平井试井的影响. 力学学报, 2016, 48(2): 464-472 | [1] | (Ouyang Weiping, Zhang Mian, Sun Hu.Effect of wellbore gas-liquid two-phase flow on well test of fractured horizontal wells in tight gas reservoir. Chinese Journal of Theoretical and Applied, 2016, 48(2) : 464-472 (in Chinese)) | [2] | Jin ZY, Yin CY, Chen Y, et al.Coupling Runge-Kutta discontinuous Galerkin method to finite element method for compressible multi-phase flow interacting with a deformable sandwich structure. Ocean Engineering, 2017, 130: 597-610 | [3] | 徐绯, 任选其, 李亚南等. 积水跑道飞机翻边轮胎溅水机理研究. 西北工业大学学报, 2017, 35(4): 615-621 | [3] | (Xu Fei, Ren Xuanqi, ~Li Yanan, et al. Mechanism of water spray generated by aircraft chine tire running on wet runway. Journal of Northwestern Polytechnical University, 2017, 35(4): 615-621 (in Chinese)) | [4] | 杜特专, 王一伟, 黄晨光等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(4): 782-792 | [4] | (Du Tezhuan, Wang Yiwei, Huang Chenguang, et al.Study on coupling effects of underwater launched vehicle. Chinese Journal of Theoretical and Applied, 2017, 49(4): 782-792 (in Chinese)) | [5] | Croce R, Griebel M, Schweitzer MA.Numerical, simulation of bubble and droplet deformation by a level set approach with surface tension. International Journal for Numerical Methods in Fluids, 2010, 62(9): 963-993 | [6] | 刘双兵, 刘海湖. 亚网格尺度稳定化有限元求解不可压黏性流动. 力学学报, 2011, 43(6): 1083-1090 | [6] | (Liu Shuangbing, Liu Haihu.Subgrid scale stabilized finite element for solution of incompressible viscous flows. Chinese Journal of Theoretical and Applied, 2011, 43(6): 1083-1090 (in Chinese)) | [7] | 吕宏强, 张涛, 孙强等. 间断伽辽金方法在可压缩流数值模拟中的应用研究综述. 空气动力学学报, 2017, 35(4): 455-471 | [7] | (Lü Hongqiang,Zhang Tao,Sun Qiang, et al.Applications of discontinuous Galerkin method in numerical simulations of compressible flows: A review. Acta Aerodynamica Sinica, 2017, 35(4): 455-471 (in Chinese)) | [8] | 李聪洲, 张新曙, 胡晓峰等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(2): 233-243 | [8] | (Li Congzhou, Zhang Xinshu, Hu Xiaofeng, et al.The Study of flow past multiple cylinders at high Reynolds numbers. Chinese Journal of Theoretical and Applied, 2018, 50(2): 233-243 (in Chinese)) | [9] | 及春宁, 花阳, 许栋等. 不同剪切率来流作用下柔性圆柱涡激振动数值模拟. 力学学报, 2018, 50(1): 21-31 | [9] | (Numerical simulation of vortex-induced vibration of a flexible cylinder exposed to shear flow at different shear rates. Chinese Journal of Theoretical and Applied, 2018, 50(1): 21-31 (in Chinese)) | [10] | 程志林, 宁正福, 曾彦等. 格子Boltzmann方法模拟多孔介质惯性流的边界条件改进. 力学学报, 2019, 51(1): 124-134 | [10] | (Cheng Zhilin, Ning Zhengfu, Zeng Yan, et al.A lattice boltzmann simulation of fluid flowin porous media using a modified boundary condition. Chinese Journal of Theoretical and Applied, 2019, 51(1): 124-134 (in Chinese)) | [11] | 袁国强, 李颖晖. 二维稳定流形的自适应推进算法. 力学学报, 2018, 50(2): 405-414 | [11] | (Yuan Guoqiang, Li Yinghui.Adaptive front advancing algorithm for computing two-dimensional stable manifolds. Chinese Journal of Theoretical and Applied, 2018, 50(2): 405-414 (in Chinese)) | [12] | 何涛. 基于ALE有限元法的流固耦合强耦合数值模拟. 力学学报, 2018, 39(2): 1549-1561 | [12] | (He Tao.A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary Lagrangian-Eulerian finite element formulation. Chinese Journal of Theoretical and Applied, 2018, 39(2): 1549-1561 (in Chinese)) | [13] | 张雄, 刘岩. 无网格法. 北京:清华大学出版社, 2004 | [13] | (Zhang Xiong, Liu Yan. Meshless Method.Beijing: Tsinghua University Press, 2004 (in Chinese)) | [14] | 潘徐杰, 张怀新, 孙学尧. 基于大涡模拟的移动粒子半隐式法研究. 力学学报, 2011, 43(3): 616-620 | [14] | (Pan Xujie, Zhang Huaixin, Sun Xueyao.Moving-particle semi-implicit method research based on large eddy simulation. Chinese Journal of Theoretical and Applied, 2011, 43(3): 616-620 (in Chinese)) | [15] | 刘硕, 方国东, 王兵等.近场动力学与有限元方法耦合求解热传导问题.力学学报,2018,50(2): 339-348 | [15] | (Liu Shuo, Fang Guodong, Wang Bing, et al.Study of thermal conduction problem using coupled peridynamics and finite element method. Chinese Journal of Theoretical and Applied, 2018, 50(2): 339-348 (in Chinese)) | [16] | 朱跃, 姜胜耀, 杨星团等. 粒子法中压力振荡的机理研究. 力学学报, 2018, 50(3): 688-698 | [16] | (Zhu Yue, Jiang Shengyao, Yang Xingtuan, et al.Mechanism analysis of pressure oscillation in particle method. Chinese Journal of Theoretical and Applied, 2018, 50(3): 688-698 (in Chinese)) | [17] | Monaghan JJ, Kocharyan A .SPH simulation of multi-phase flow. Computer Physics Communications, 1995, 87(1-2): 225-235 | [18] | Liu GR, Liu MB .Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76 | [19] | 闫蕊, 徐绯, 任选其. SPH方法研究空气在平板入水中的影响. 计算力学学报, 2017, 34(5): 564-569 | [19] | (Yan Rui, Xu Fei, Ren Xuanqi.Research on the effects of air during flat plate impacting with water using SPH method. Chinese Journal of Computational Mechanics, 2017, 34(5): 564-569 (in Chinese)) | [20] | Zhang AM, Sun PN, Ming FR, et al.Smoothed particle hydrodynamics and its applications in fluid-structure interactions. Journal of Hydrodynamics, 2017, 29(2): 187-216 | [21] | Ritchie BW, Thomas PA.Multiphase smoothed-particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2010, 323(3): 743-756 | [22] | Colagrossi A, Landrini M.Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 2003, 191(2): 448-475 | [23] | Colagrossi A, Antuono M, Grenier N, et al. Simulation of interfacial and free-surface flows using a new SPH formulation//3rd ERCOFTAC SPHERIC Workshop on SPH Applications, 2008, Lausanne, Switzerland | [24] | Flebbe O, Muenzel S, Herold H, et al.Smoothed Particle Hydrodynamics: Physical viscosity and the simulation of accretion disks. Astrophysical Journal, 1994, 431(2): 754-760 | [25] | Grenier N, Antuono M, Colagrossi A, et al.An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational Physics, 2009, 228(22): 8380-8393 | [26] | Adami S, Hu XY, Adams NA.A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. Journal of Computational Physics, 2010, 229(13): 5011-5021 | [27] | Monaghan JJ, Rafiee A.A simple SPH algorithm for multi-fluid flow with high density ratios. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561 | [28] | Chen Z, Zong Z, Liu MB, et al.An SPH model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, 2015, 283: 169-188 | [29] | Lind SJ, Stansby PK, Rogers BD.Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics(SPH). Journal of Computational Physics, 2016, 309: 129-147 | [30] | Wan H, Li R, Pu X, et al.Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model. International Journal of Computational Fluid Dynamics, 2018, 31(4): 1-15 | [31] | Kruisbrink ACH, Pearce FR, Yue T, et al.An SPH multi-fluid model based on quasi-buoyancy for interface stabilization up to high density ratios and realistic wave speed ratios. International Journal for Numerical Methods in Fluids, 2018, 84: 487-507[32] Rezavand M, Taeibi-Rahni M, Rauch W. An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios. Computers & Mathematics with Applications, 2018, 75(8): 2658-2677 | [33] | Inutsuka S.Godunov-type SPH. Memorie Della Societa Astronomica Italiana, 1994, 65: 1027 | [34] | Monaghan JJ.SPH and Riemann Solvers. Journal of Computational Physics, 1997, 136(2): 298-307 | [35] | Parshikov AN.Application of the Riemann problem to the SPH method. Computational Methematics and Methematical Physics, 1999, 39(7): 1173-1182 | [36] | Sirotkin FV, Yoh JJ .A smoothed particle hydrodynamics method with approximate Riemann solvers for simulation of strong explosions. Computers & Fluids, 2013, 88(12): 418-429 | [37] | Rogers D, Dalrymple A, Stansby K.Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research, 2010, 48: 135-141 | [38] | 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701 | [38] | (Sun Pengnan, Li Yunbo, Ming Furen.Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701 (in Chinese)) | [39] | Wendland H.Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 1995, 4(1): 389-396 | [40] | Zhang C, Hu XY.A weakly compressible SPH method based on a low-dissipation Riemann solver. Journal of Computational Physics, 2017, 335: 605-620 | [41] | Adami S, Hu XY, Adams NA.A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 2012, 231(21): 7057-7075 | [42] | Morris JP .Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333-353 | [43] | 杨秀峰, 刘谋斌. 瑞利--泰勒不稳定问题的光滑粒子法(SPH)模拟研. 物理学报, 2017, 66(19): 164701 | [43] | (Yang Xiufeng, Liu Moubin.Numerical study of Rayleigh-Taylor instability by usingsmoothed particle hydrodynamics. Acta Physica Sinica, 2017, 66(16): 164701(in Chinese)) | [44] | Dalziel S.Toy models for Rayleigh Taylor instability. 8th International Workshop on the Physics of Compressible Turbulent Mixing, Lawrence Livermore National Laboratory, UCRL-MI-146350, 2001 |
|