EI、Scopus 收录
中文核心期刊

接触非线性对声黑洞梁减振效果的影响

李海勤, 孔宪仁, 刘源

李海勤, 孔宪仁, 刘源. 接触非线性对声黑洞梁减振效果的影响[J]. 力学学报, 2019, 51(4): 1189-1201. DOI: 10.6052/0459-1879-18-392
引用本文: 李海勤, 孔宪仁, 刘源. 接触非线性对声黑洞梁减振效果的影响[J]. 力学学报, 2019, 51(4): 1189-1201. DOI: 10.6052/0459-1879-18-392
Li Haiqin, Kong Xianren, Liu Yuan. EFFECT OF CONTACT NONLINEARITY ON ACOUSTIC BLACK HOLE BEAM FOR VIBRATION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1189-1201. DOI: 10.6052/0459-1879-18-392
Citation: Li Haiqin, Kong Xianren, Liu Yuan. EFFECT OF CONTACT NONLINEARITY ON ACOUSTIC BLACK HOLE BEAM FOR VIBRATION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1189-1201. DOI: 10.6052/0459-1879-18-392
李海勤, 孔宪仁, 刘源. 接触非线性对声黑洞梁减振效果的影响[J]. 力学学报, 2019, 51(4): 1189-1201. CSTR: 32045.14.0459-1879-18-392
引用本文: 李海勤, 孔宪仁, 刘源. 接触非线性对声黑洞梁减振效果的影响[J]. 力学学报, 2019, 51(4): 1189-1201. CSTR: 32045.14.0459-1879-18-392
Li Haiqin, Kong Xianren, Liu Yuan. EFFECT OF CONTACT NONLINEARITY ON ACOUSTIC BLACK HOLE BEAM FOR VIBRATION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1189-1201. CSTR: 32045.14.0459-1879-18-392
Citation: Li Haiqin, Kong Xianren, Liu Yuan. EFFECT OF CONTACT NONLINEARITY ON ACOUSTIC BLACK HOLE BEAM FOR VIBRATION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1189-1201. CSTR: 32045.14.0459-1879-18-392

接触非线性对声黑洞梁减振效果的影响

基金项目: 1) 国家自然科学基金资助项目(51875119)
详细信息
    通讯作者:

    李海勤

  • 中图分类号: TB535

EFFECT OF CONTACT NONLINEARITY ON ACOUSTIC BLACK HOLE BEAM FOR VIBRATION DAMPING

  • 摘要: 声黑洞(acoustic black hole, ABH)效应是基于弯曲波在变厚度薄壁结构中的传播性质发展起来的一种被动减振技术. 本文针对传统的线性声黑洞在高频段具有显著减振效果,而在低频段减振性能欠佳的问题,利用接触非线性提出了将能量从低频段传递到高频段的想法,旨在提升声黑洞的总体性能. 考虑声黑洞梁和位于其下方的接触挡板的碰撞振动问题,首先,通过实验验证了引入接触碰撞后系统的非线性机制及能量传递效应. 随后,基于欧拉-伯努利梁理论建立了声黑洞梁和挡板碰撞振动的数值模型,并分析了模型的收敛性. 该模型遵循模态法的求解过程,并利用有限差分法处理变厚度梁的特征值问题. 接触作用力借鉴于Hertzian接触定律来刻画,阻尼层的影响则通过Ross-Kerwin-Ungard模型求解. 基于数值模型,着重分析了含接触非线性时,声黑洞梁的能量传递与衰减特性及其对声黑洞减振性能的提升,并考察了接触刚度、接触点位置和初始间隙等接触参数的影响. 结果表明引入接触非线性后,振动能量可以从声黑洞性能欠佳的低频段传递到声黑洞效果显著的高频区域,梁的能量衰减速度显著加快,声黑洞的整体减振性能得到了有效地提高.
    Abstract: Acoustic black hole effect (ABH) refers to a passive vibration mitigation technique which takes advantage of flexural wave properties in thin structures with variable thickness. Focusing on the problem that the classical linear ABH is efficient only at high frequency range but less than desirable in the low frequency domain, this paper proposes the idea of using contact nonlinearity to transfer the energy from low to high frequency range, in order to improve the overall efficacy of the ABH. Considering the vibration of an ABH beam in contact with a rigid barrier from below it, an experimental study is firstly carried out to show the nonlinear phenomena and energy transfer induced by the contact nonlinearity. Then, a numerical model is derived from Euler-Bernoulli beam theory, with convergence properties studied. The model follows the general procedures of modal approach, while the eigenvalue problems are computed using a finite difference method due to thickness variation. The contact force is handled by Hertzian contact law, and the damping layer is dealt with a Ross-Kerwin-Ungard model. Detailed studies considering contact nonlinearity are thus conducted to precisely quantify the energy transfer and decay, and the gain in efficiency of the ABH, with parametric effect respect to the contact stiffness, initial gap and longitudinal location of contact points. It is demonstrated that when the contact nonlinearity is induced to the system, the vibrational energy can be transferred from the low frequency band-where the ABH is inefficient, to the high frequency range-where the ABH is effective, the energy decay in the beam is remarkably accelerated, and the overall performance of the ABH effect is significantly improved.
  • [1] Ross D, Ungar EE, Kerwin EM . Damping of plate flexural vibrations by means of viscoelastic laminae. Structural Damping, 1959: 49-97
    [2] 欧进萍 . 结构振动控制. 北京: 科学出版社, 2003: 1-12
    [2] ( Ou Jinping . Structure Vibration Control. Beijing: Science Press, 2003: 1-12(in Chinese))
    [3] Den Hartog JP . Mechanical Vibrations . New York: McGraw-Hill, 1934
    [4] 邹广平, 张冰, 吕忠良 等. 弹簧-金属丝网橡胶组合减振器迟滞力学模型及实验研究. 力学学报, 2018,50(5):1125-1134
    [4] ( Zou Guangping, Zhang Bing, Chang Zhongliang , et al. Hysteresis mechanical model and experimental study of spring metal-net rubber combination damper. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1125-1134(in Chinese))
    [5] Krenk S, Hogsberg J . Tuned mass absorber on a flexible structure. Journal of Sound and Vibration, 2014,333:1577-1595
    [6] 季宏丽, 黄薇, 裘进浩 等. 声学黑洞结构应用中的力学问题. 力学进展, 2017,47:333-384
    [6] ( Ji Hongli, Huang Wei, Qiu Jinhao , et al. Mechanics problems in application of acoustic black hole structures. Advances in Mechanics, 2017,47:333-384(in Chinese))
    [7] Mironov MA . Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Soviet Physics: Acoustics, 1988,34(3):318-319
    [8] Krylov VV, Tilman FJBS . Acoustic black holes for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 2004,274(3-5):605-619
    [9] Tang L, Cheng L, Ji H , et al. Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model. Journal of Sound and Vibration, 2016,374:172-184
    [10] Georgiev VB, Cuenca J, Gautier F , et al. Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of sound and vibration, 2011,330(11):2497-2508
    [11] Denis V, Pelat A, Gautier F , et al. Modal overlap factor of a beam with an acoustic black hole termination. Journal of Sound and Vibration, 2014,333(12):2475-2488
    [12] O'Boy DJ, Krylov VV, Kralovic V . Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. Journal of Sound and Vibration, 2010,329(22):4672-4688
    [13] Deng J, Zheng L, Zeng P , et al. Guasch. Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams. Mechanical Systems and Signal Processing, 2018,118:461-476
    [14] Shepherd MR, McCormick CA, Conlon SC , et al. Modeling and optimization of acoustic black hole vibration absorbers. The Journal of the Acoustical Society of America, 2017,141(5):4034
    [15] Tang L, Cheng L . Enhanced acoustic black hole effect in beams with a modified thickness profile and extended platform. Journal of Sound and Vibration, 2017,391:116-126
    [16] Conlon SC, Fahnline JB, Semperlotti F . Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes. The Journal of the Acoustical Society of America, 2015,137(1):447-457
    [17] Lee JY, Jeon W . Vibration damping using a spiral acoustic black hole. The Journal of the Acoustical Society of America, 2017,141(3):1437-1445
    [18] Huang W, Ji H, Qiu J , et al. Analysis of ray trajectories of flexural waves propagating over generalized acoustic black hole indentations. Journal of Sound and Vibration, 2018,417:216-226
    [19] Huang W, Qiu J, Cheng L . Flexural wave focalization in plates with imperfect two-dimensional acoustic black hole //INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2016
    [20] 黄薇, 季宏丽, 裘进浩 等. 二维声学黑洞对弯曲波的能量聚集效应. 振动与冲击, 2017,36(9):51-57
    [20] ( Huang Wei, Ji Hongli, Qiu Jinhao , et al. Energy focusing effect of Two-dimensional acoustic black hole on flexural waves. Journal of Vibration & Shock, 2017,36(9):51-57(in Chinese))
    [21] Zhao L, Conlon SC, Semperlotti F . Broadband energy harvesting using acoustic black hole structural tailoring. Smart Materials and Structures, 2014,23(6):065021
    [22] Krylov VV, Winward RETB . Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 2007,300(1-2):43-49
    [23] Bowyer EP, O'Boy DJ, Krylov VV , et al. Experimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law profile. Applied Acoustics, 2013,74(4):553-560
    [24] Feurtado PA, Conlon SC . An experimental investigation of acoustic black hole dynamics at low, mid, and high frequencies. Journal of Vibration and Acoustics, 2016,138(6):061002
    [25] Bowyer EP, O'Boy DJ, Krylov VV , et al. Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile. Applied Acoustics, 2012,73(5):514-523
    [26] Denis V, Gautier F, Pelat A , et al. Measurement and modelling of the reflection coefficient of an acoustic black hole termination. Journal of Sound and Vibration, 2015,349:67-79
    [27] Aklouche O, Pelat A, Maugeais S , et al. Scattering of flexural waves by a pit of quadratic profile inserted in an infinite thin plate. Journal of Sound and Vibration, 2016,375:38-52
    [28] Denis V, Pelat A, Touzé C , et al. Improvement of the acoustic black hole effect by using energy transfer due to geometric nonlinearity. International Journal of Nonlinear Mechanics, 2017,94:134-145
    [29] Boudaoud A, Cadot O, Odille B , et al. Observation of wave turbulence in vibrating plates. Physical Review Letters, 2008,100(23):234-504
    [30] Ducceschi M, Cadot O, Touzé C , et al. Dynamics of the wave turbulence spectrum in vibrating plates: A numerical investigation using a conservative finite difference scheme. Physica D Nonlinear Phenomena, 2014, 280-281(7):73-85
    [31] Ibrahim RA . Vibro-impact dynamics: Modeling, mapping and applications, volume 43. Springer Science & Business Media, 2009
    [32] Lamarque CH, Gendelman OV, Savadkoohi AT , et al. Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mechanica, 2011,221(1-2):175-200
    [33] Gourc E, Michon G, Séguy S , et al. Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: Analytical and experimental developments. Journal of Vibration and Acoustics, 2015,137(3):031008
    [34] Pennisi G, Stephan C, Gourc E , et al. Experimental investigation and analytical description of a vibro-impact NES coupled to a single-degree-of-freedom linear oscillator harmonically forced. Nonlinear Dynamics, 2017,88(3):1769-1784
    [35] 王嗣强, 季顺迎 . 考虑等效曲率的超二次曲面单元非线性接触模型. 力学学报, 2018,50(5):1081-1092
    [35] ( Wang Siqiang, Ji Shunying . Non-linear contact model for super-quadric element considering the equivalent radius of curvature. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1081-1092(in Chinese))
    [36] 王东, 徐超, 胡杰 等. 连接结构接触界面非线性力学建模研究. 力学学报, 2018,50(1):44-57
    [36] ( Wang Dong, Xu Chao, Hu Jie , et al. Nonlinear mechanics modeling for joint interface of assembled structure. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):44-57(in Chinese))
    [37] Bilbao S, Torin A, Chatziioannou V . Numerical modeling of collisions in musical instruments. Acta Acustica United with Acustica, 2015,101(1):155-173
    [38] Issanchou C, Bilbao S, Le Carrou JL , et al. A modal-based approach to the nonlinear vibration of strings against a unilateral obstacle: Simulations and experiments in the pointwise case. Journal of Sound and Vibration, 2017,393:229-251
    [39] Goldsmith W . Impact. Courier Corporation, 2001
    [40] Hunt K, Crossley F . Coefficient of restitution interpreted as damping in vibro-impact. Journal of Applied Mechanics, 1975,42(2):440-445
    [41] 孙攀旭, 杨红, 吴加峰 等. 基于频率相关黏性阻尼模型的复模态叠加法. 力学学报, 2018,50(5):1185-1197
    [41] ( Sun Panxu, Yang Hong, Wu Jiafeng , et al. Complex mode superposition method based on frequency dependent viscous damping model. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1185-1197(in Chinese))
    [42] Bilbao S . Numerical sound synthesis: finite difference schemes and simulation in musical acoustics. John Wiley & Sons, 2009
    [43] Chatziioannou V, van Walstijn M . Energy conserving schemes for the simulation of musical instrument contact dynamics. Journal of Sound and Vibration, 2015,339:262-279
    [44] van Walstijn M, Bridges J . Simulation of distributed contact in string instruments: A modal expansion approach //Signal Processing Conference (EUSIPCO), 2016 24th European, IEEE, 2016: 1023-1027
  • 期刊类型引用(3)

    1. 邢其森,徐传燕,黄显利,李永生,王帅杰,刘润达,刘永利. 附加式二维声学黑洞减振特性. 内燃机与动力装置. 2024(06): 33-39 . 百度学术
    2. 徐文健,王栋. 振动波分离引起的能量耗散性能分析. 振动工程学报. 2023(05): 1292-1299 . 百度学术
    3. 何昊南,于开平,唐宏,李金泽,周前坤,张晓蕾. 有间隙折叠舵面的振动实验与非线性建模研究. 力学学报. 2019(05): 1476-1488 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  1824
  • HTML全文浏览量:  369
  • PDF下载量:  121
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-11-21
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回