EI、Scopus 收录
中文核心期刊

减阻用表面活性剂溶液分子动力学模拟研究进展

魏进家, 刘飞, 刘冬洁

魏进家, 刘飞, 刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展[J]. 力学学报, 2019, 51(4): 971-990. DOI: 10.6052/0459-1879-18-372
引用本文: 魏进家, 刘飞, 刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展[J]. 力学学报, 2019, 51(4): 971-990. DOI: 10.6052/0459-1879-18-372
Wei Jinjia, Liu Fei, Liu Dongjie. PROGRESS IN MOLECULAR DYNAMICS SIMULATIONS OF SURFACTANT SOLUTION FOR TURBULENT DRAG REDUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 971-990. DOI: 10.6052/0459-1879-18-372
Citation: Wei Jinjia, Liu Fei, Liu Dongjie. PROGRESS IN MOLECULAR DYNAMICS SIMULATIONS OF SURFACTANT SOLUTION FOR TURBULENT DRAG REDUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 971-990. DOI: 10.6052/0459-1879-18-372
魏进家, 刘飞, 刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展[J]. 力学学报, 2019, 51(4): 971-990. CSTR: 32045.14.0459-1879-18-372
引用本文: 魏进家, 刘飞, 刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展[J]. 力学学报, 2019, 51(4): 971-990. CSTR: 32045.14.0459-1879-18-372
Wei Jinjia, Liu Fei, Liu Dongjie. PROGRESS IN MOLECULAR DYNAMICS SIMULATIONS OF SURFACTANT SOLUTION FOR TURBULENT DRAG REDUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 971-990. CSTR: 32045.14.0459-1879-18-372
Citation: Wei Jinjia, Liu Fei, Liu Dongjie. PROGRESS IN MOLECULAR DYNAMICS SIMULATIONS OF SURFACTANT SOLUTION FOR TURBULENT DRAG REDUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 971-990. CSTR: 32045.14.0459-1879-18-372

减阻用表面活性剂溶液分子动力学模拟研究进展

基金项目: 1) 国家自然科学基金(51636006);国家自然科学基金(51225601);中央高校基本科研业务费(cxtd2017004)
详细信息
    通讯作者:

    魏进家

  • 中图分类号: TE08;TV131

PROGRESS IN MOLECULAR DYNAMICS SIMULATIONS OF SURFACTANT SOLUTION FOR TURBULENT DRAG REDUCTION

  • 摘要: 减阻用表面活性剂在能源动力及化工领域有着广泛应用,在管道流体中加入少量表面活性剂可以使流动阻力大大降低从而节约能源,对于表面活性剂减阻机理的讨论也是近些年学者关注的热点之一.本文不仅对课题组前些年在表面活性剂溶液流变性、湍流减阻、减阻与传热的相关性、布朗动力学模拟方面的工作进行了概述,而且详细介绍了近三年来在表面活性剂粗粒化分子动力学模拟方面的研究成果.粗粒化模拟是近年来发展起来的方法,目前已广泛应用于化学、生物等诸多领域.在粗粒化分子动力学模拟方面的工作包括:表面活性剂溶液的流变性能与微观结构、表面活性剂溶液湍流减阻机理研究、湍流减阻失效分析三个部分.通过对表面活性剂溶液分子动力学模拟研究进展的回顾,作者认为,利用粗粒化分子动力学模拟方法可以合理揭示表面活性剂胶束的结构与流变性的对应关系,对胶束的断裂与再连接能力进行多维度的评价,如胶束的拉伸能、断裂能、最大拉伸长度、结合能、$\zeta$电势、疏水基驱动作用等方面.并对"黏弹说"减阻机理进行分子模拟层面的验证,对实际应用中的湍流减阻失效原理进行初步分析.最后,根据对近几年分子动力学模拟工作的总结,展望了未来粗粒化分子动力学模拟在表面活性剂方面的研究方向.
    Abstract: Surfactant additives for turbulent drag reduction have been widely used in energy power and chemical industry. The addition of a small amount of surfactant additives in the pipeline fluid can greatly reduce the flow friction resistance and save energy. In recent years, the research on the mechanism of surfactant drag reduction is also a hot scientific topic. This paper not only summarized our work on the rheology of surfactant solution, surfactant drag reduction, the correlation with surfactant drag reduction and heat transfer, Brownian dynamics simulations in the latest years, but also concerning some works based on the coarse grained molecular dynamics (CGMD) simulations in the past three years, which will be elaborated in detail. The CGMD simulation is developed these years and now widely used in chemistry, biology and many other aspects. Our CGMD simulation work includes three parts, which are the rheology properties and its microstructures of the surfactant solution, the mechanism of turbulent drag reduction by surfactant additives, the analysis of turbulent drag reduction failure phenomenon on the pipeline transportation system. Through reviewing the progress in our CGMD simulation work, we believe that the CGMD simulation method can reasonably explain the rheological behavior of surfactant solutions, and the relationship between the rheology and the surfactant micelle structure can be well studied by using the coarse grained model. The breakage and the recombination behaviors of surfactant micelles can be evaluated from a multidimensional system including the extensional energy, the breakage energy, the maximum reasonable stretching distance, coalescence energy, zeta potential, or hydrophobic driving effect. Besides, the "viscoelasticity theory" can be proved from a molecular scale. Last but not least, the mechanism of turbulent drag reduction failure phenomenon can also be analyzed by CGMD simulation by simulating different failure reasons. At last, we summarize the CGMD simulation work on surfactant in recent years and then the direction of the future work about CGMD simulation work on surfactant is predicted.
  • [1] Ohlendorf D, Interthal W, Hoffmann H . Surfactant systems for drag reduction: physico-chemical properties and rheological behaviour. Rheologica Acta, 1986,25(5):468-486
    [2] Sellin RHJ, Ollis M . Polymer drag reduction in large pipes and sewers: results of recent field trials. Journal of Rheology, 1980,24(5):667-684
    [3] Choi HJ, Kim CA, Sung JH , et al. Universal drag reduction characteristics of saline water-soluble poly(ethylene oxide) in a rotating disk apparatus. Colloid & Polymer Science, 2000,278(7):701-705
    [4] Wang Y, Yu B, Zakin JL , et al. Review on drag reduction and its heat transfer by additives. Advances in Mechanical Engineering, 2011(3):132-137
    [5] Hoffmann H . Structure formation in surfactant solutions: a personal view of 35 years of research in surfactant science. Advances in Colloid & Interface Science, 2012,178(1):21-33
    [6] 魏进家, 姚志强 . 一种界面活性剂减阻溶液的流变特性. 化工学报, 2007,58(2):335-340
    [6] ( Wei Jinjia, Yao Zhiqiang . Rheological characteristics of drag reducing surfactant solution. Journal of Chemical Industry and Engineering (China), 2007,58(2):335-340 (in Chinese))
    [7] 马宁, 魏进家, 张成伟 等. CTAC表面活性剂水溶液的流变特性. 工程热物理学报, 2012,33(9):1547-1550
    [7] ( Ma Ning, Wei Jinjia, Zhang Chengwei , et al. Rheological properties of CTAC surfactant aqueous solutions. Journal of Engineering Thermophysics, 2012,33(9):1547-1550 (in Chinese))
    [8] 马宁, 魏进家 . 中等浓度表面活性剂溶液流变特性的实验研究. 西安交通大学学报, 2012,46(1):30-34
    [8] ( Ma Ning, Wei Jinjia . Experimental study on rheological properties of semidilute surfactant solutions. Journal of Xi'an Jiaotong University, 2012,46(1):30-34 (in Chinese))
    [9] Xu N, Wei JJ . Time-dependent shear-induced nonlinear viscosity effects in dilute CTAC/NaSal solutions: Mechanism analyses. Advances in Mechanical Engineering, 2014(6):1-8
    [10] Xu N, Wei JJ, Kawaguchi Y . Dynamic and energy analysis on the viscosity transitions with increasing temperature under shear for dilute CTAC surfactant solutions. Industrial & Engineering Chemistry Research, 2016,55(8):2279-2286
    [11] 王青会, 刘冬洁, 魏进家 . 阳离子Gemini表面活性剂/水杨酸钠溶液的黏度特性. 华东理工大学学报, 2018(2):162-167
    [11] ( Wang Qinghui, Liu Dongjie, Wei Jinjia . Viscosity of cationic gemini surfactant/nasal solutions. Journal of East China University of Science and Technology (Natural Science Edition), 2018(2):162-167 (in Chinese))
    [12] 王德忠, 胡友情, 王松平 等. 低浓度表面活性剂减阻流体的性能. 上海交通大学学报, 2005,39(2):225-233
    [12] ( Wang Dezhong, Hu Youqing, Wang Songping , et al. The mechanism research of the drag reducing fluid of low concentration surfactant. Journal of Shanghai Jiao Tong University, 2005,39(2):225-233 (in Chinese))
    [13] 蔡书鹏, 杨林, 唐川林 . 边界层中CTAB表面活性剂减阻水溶液的湍流特性. 力学学报, 2008,40(2):250-254
    [13] ( Cai Shupeng, Yang Lin, Tang Chuanlin . Turbulent characteristics of CTAB surfactant solution flows in turbulent boundary layers. Chinese Journal of Theoretical and Applied Mechanics, 2008,40(2):250-254 (in Chinese))
    [14] 王德忠, 胡友情, 王松平 等. 表面活性剂减阻流体湍流空间结构试验研究. 热能动力工程, 2004,19(2):140-143
    [14] ( Wang Dezhong, Hu Youqing, Wang Songping , et al. Experimental research on the turbulent spatial structure of a drag reducing fluid with a surfactant being added. Journal of Engineering for Thermal Energy and Power, 2004,19(2):140-143 (in Chinese))
    [15] Wei JJ, Kawaguchi Y, Li FC , et al. Reduction and turbulence characteristics in sub-zero temperature range of cationic and zwitterionic surfactants in EG/water solvent. Journal of Turbulence, 2009,10(10):1-15
    [16] 王剑峰, 魏进家, 李凤臣 等. 表面活性剂溶液的减阻和传热特性研究. 工程热物理学报, 2010,31(11):1859-1862
    [16] ( Wang Jianfeng, Wei Jinjia, Li Fengchen , et al. Study on the drag reduction and heat transfer characteristics of cationic surfactant solution at different temperature. Journal of Engineering Thermophysics, 2010,31(11):1859-1862 (in Chinese))
    [17] 庞明军, 徐磊, 张展 等. 小槽道表面活性剂湍流减阻及流变特性的实验研究. 节能技术, 2017,35(3):195-198
    [17] ( Pang Mingjun, Xu Lei, Zhang Zhan , et al. Experimental studies on rheological and turbulent drag -reducing properties of surfactant in small-size channel. Energy Conservation Technology, 2017,35(3):195-198 (in Chinese))
    [18] 蔡书鹏, 汪志能, 段传伟 等. 表面活性剂减阻水溶液突扩流的阻力特性. 力学学报, 2018,50(2):274-283
    [18] ( Cai Shupeng, Wang Zhineng, Duan Liangwei , et al. Drag characteristics of a drag-reducing surfactant solution flowing over a sudden-expansion pipe. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):274-283 (in Chinese))
    [19] Bixler GD, Bhushan B . Fluid drag reduction with shark‐skin riblet inspired microstructured surfaces. Advanced Functional Materials, 2013,23(36):4507-4528
    [20] Chen H, Zhang X, Che D , et al. Synthetic effect of vivid shark skin and polymer additive on drag reduction reinforcement. Advances in Mechanical Engineering. 2014(6):1-8
    [21] Huang C, Liu DJ, Wei JJ . Experimental study on drag reduction performance of surfactant flow in longitudinal grooved channels. Chemical Engineering Science, 2016,152(2):267-279
    [22] Mohsenipour AA, Pal R . Drag reduction in turbulent pipeline flow of mixed nonionic polymer and cationic surfactant systems. Canadian Journal of Chemical Engineering, 2012,91(1):190-201
    [23] Matras Z, Kopiczak B . Intensification of drag reduction effect by simultaneous addition of surfactant and high molecular polymer into the solvent. Chemical Engineering Research & Design, 2015,96:35-42
    [24] 王青会, 刘冬洁, 魏进家 . 阳离子型表面活性剂与非离子型聚合物相互作用减阻研究. 西安交通大学学报, 2018(1):26-32
    [24] ( Wang Qinghui, Liu Dongjie, Wei Jinjia . Investigation on the drag reduction by interaction of cationic surfactant with nonionic polymer. Journal of Xi'an Jiaotong University, 2018(1):26-32 (in Chinese))
    [25] Wei JJ, Kawaguchi Y, Li FC , et al. Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution. International Journal of Heat & Mass Transfer, 2009,52(15):3547-3554
    [26] Yu B, Wu X, Wei JJ , et al. DNS study by a bilayer model on the mechanism of heat transfer reduction in drag-reduced flow induced by surfactant. International Communications in Heat & Mass Transfer, 2011,38(2):160-167
    [27] Yu B, Kawaguchi Y . Direct numerical simulation of viscoelastic drag-reducing flow: A faithful finite difference method. Journal of Non- Newtonian Fluid Mechanics, 2004,116(2):431-466
    [28] Bo Y, Kawaguchi Y . Effect of Weissenberg number on the flow structure: DNS study of drag-reducing flow with surfactant additives. International Journal of Heat & Fluid Flow, 2003,24(4):491-499
    [29] Huang C, Wang Q, Wei JJ , et al. Direct numerical simulation of turbulent flow over wide-rib rectangular grooves. Canadian Journal of Chemical Engineering, 2017,96(5):1207-1220
    [30] Huang C, Liu DJ, Wei JJ , et al. Direct numerical simulation of surfactant solution flow in the wide‐rib rectangular grooved channel. Aiche Journal, 2018,64(7):2898-2912
    [31] 王帅, 姚寅, 杨亚政 等. 双层金属纳米板界面能密度的尺寸效应. 力学学报, 2017,49(5):978-984
    [31] ( Wang Shuai, Yao Yin, Yang Yazheng , et al. Size effect of the interface energy density in bi-nano-scaled-metallic plates. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):978-984 (in Chinese))
    [32] 黄仕平, 吴杰, 胡俊亮 等. 基于分子动力学-格林函数法的微凸体接触数值分析. 力学学报, 2017,49(4):961-967
    [32] ( Huang Shiping, Wu Jie, Hu Junliang , et al. Numerical analysis of asperity contact model based on molecular dynamics-Green's function method. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):961-967 (in Chinese))
    [33] 鲍路瑶, 罗凯, 文俊 等. 疏液壁面上亲液杂质对滑移特性的影响. 力学学报, 2017,49(4):811-817
    [33] ( Bao Luyao, Luo Kai, Wen Jun , et al. Influence of small amount of wetting impurity on the slip of liquid flow over non-wetting surface. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):811-817 (in Chinese))
    [34] Marrink SJ, Vries AHD, Mark AE . Coarse grained model for semiquantitative lipid simulations. Journal of Physical Chemistry B, 2004,108(2):750-760
    [35] Marrink SJ, Risselada HJ, Yefimov S , et al. The MARTINI force field: coarse grained model for biomolecular simulations. Journal of Physical Chemistry B, 2007,111(27):7812-7824
    [36] Rossi G, Monticelli L, Puisto SR , et al. Coarse-graining polymers with the MARTINI force-field: Polystyrene as a benchmark case. Soft Matter, 2011,7(2):698-708
    [37] Wei JJ, Kawaguchi Y, Yu B , et al. Microstructures and rheology of micellar surfactant solution by Brownian dynamics simulation. Nonlinear Dynamics, 2010,61(3):503-515
    [38] Wei JJ, Kawaguchi Y, Yu B , et al. Brownian dynamics simulation of microstructures and elongational viscosities of micellar surfactant solution. Chinese Physics Letters, 2008,25(12):4469-4472
    [39] Zhang C, Wei J . Mesoscale simulation study of the structure and rheology of dilute solutions of flexible micelles. Chemical Engineering Science, 2013,102:544-550
    [40] Xu Z, Pablo JJD, Kim S . Transport properties of polymer melts from nonequilibrium molecular dynamics. Journal of Chemical Physics, 1995,102(14):5836-5844
    [41] Castillo-Tejas J, Alvarado JFJ, Carro S , et al. Rheology of wormlike micelles from non-equilibrium molecular dynamics. Journal of Non-Newtonian Fluid Mechanics, 2011,166(3-4):194-207
    [42] 刘飞, 周文静, 魏进家 . 表面活性剂溶液粗粒化模型couette流动模拟. 工程热物理学报, 2017,36(10):2159-2163
    [42] ( Liu Fei, Zhou Wenjing, Wei Jinjia . A coarse-grain molecular dynamics simulation for surfactant aqueous solution in couette flow. Journal of Engineering Thermophysics, 2017,36(10):2159-2163 (in Chinese))
    [43] Sangwai AV, Sureshkumar R . Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles. Langmuir, 2011,27(11):6628-6638
    [44] Sangwai AV, Sureshkumar R . Binary interactions and salt-induced coalescence of spherical micelles of cationic surfactants from molecular dynamics simulations. Langmuir, 2012,28(2):1127-1135
    [45] Liu F, Zhou WJ, Liu DJ , et al. Coarse-grained molecular dynamics study on the rheological behaviors of surfactant aqueous solution. Journal of Molecular Liquids, 2018,265(1):572-577
    [46] Helgeson ME, Vasquez PA, Kaler EW , et al. Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition. Journal of Rheology, 2009,53(3):727
    [47] Xu N, Wei JJ, Kawaguchi Y . Rheology test on shear viscosity of surfactant solution: characteristic time, hysteresis phenomenon, and fitting equation. Industrial & Engineering Chemistry Research, 2016,55(20):5817-5824
    [48] 徐娜 . 基于剪切诱导和温度诱导的表面活性剂胶束结构形成及转换机理研究. [博士论文]. 西安: 西安交通大学, 2016: 19-29
    [48] ( Xu Na . Mechanism study of surfactant micelle formation and transition based on shear-induction and temperature-induction. [PhD Thesis]. Xi'an: Xi'an Jiaotong University, 2016: 19-29 (in Chinese))
    [49] Liu DJ, Liu F, Zhou WJ , et al. Molecular dynamics simulation of self-assembly and viscosity behavior of PAM and CTAC in salt-added solutions. Journal of Molecular Liquids, 2018,268:131-139
    [50] Müllerplathe F . Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1999,66(1):4894-4898
    [51] Sambasivam A, Dhakal S, Sureshkumar R . Structure and rheology of self-assembled aqueous suspensions of nanoparticles and wormlike micelles. Molecular Simulation, 2017,44(6):1-9
    [52] Bhardwaj A, Richter D, Chellamuthu M , et al. The effect of pre-shear on the extensional rheology of wormlike micelle solutions. Rheologica Acta, 2007,46(6):861-875
    [53] Liu F, Liu DJ, Zhou WJ , et al. Coarse-grained molecular dynamics simulations of the breakage and recombination behaviors of surfactant micelles. Industrial & Engineering Chemistry Research, 2018,57(27):9018-9027
    [54] Martinez L, Andrade R, Birgin EG , et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2010,30(13):2157-2164
    [55] Dhakal S, Sureshkumar R . Uniaxial extension of surfactant micelles: counterion mediated chain stiffening and a mechanism of rupture by flow-induced energy redistribution. Acs Macro Letters, 2016,5(1):108
    [56] Li FC, Yu B, Wei JJ , et al. Turbulent Drag Reduction by Surfactant Additives. Beijing: Higher Education Press, 2012
    [57] Zheng Y, Lin Z, Zakin J , et al. Cryo-TEM imaging the flow-induced transition from vesicles to threadlike micelles. The Journal of Physical Chemistry B, 2000,104(22):5263-5271
    [58] Wang P, Pei S, Wang M , et al. Coarse-grained molecular dynamics study on the self-assembly of gemini surfactants: The effect of spacer length. Physical Chemistry Chemical Physics, 2017,19(6):4462-4468
    [59] Hess B, Kutzner C, Spoel DVD , et al. GROMACS 4: Algorithms for highly rfficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory & Computation, 2008,4(3):435-447
    [60] Frenkel D, Smit B . Understanding Molecular Simulation. London: Academic Press, Inc, 2001
    [61] Darden T, York D, Pedersen L . Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. Journal of Chemical Physics, 1993,98(12):10089-10092
    [62] Lin Z, Cai JJ, Scriven LE , et al. Spherical-to-wormlike micelle transition in CTAB Solutions. The Journal of Physical Chemistry, 1994,98(23):5984-5993
    [63] Greenwood R, Kendall K . Electroacoustic studies of moderately concentrated colloidal suspensions. Journal of the European Ceramic Society, 1999,19(4):479-488
    [64] Hanaor DAH, Michelazzi M, Leonelli C , et al. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO$_2$. Journal of the European Ceramic Society, 2012,32(1):235-244
    [65] Dhakal S, Sureshkumar R . Topology, length scales, and energetics of surfactant micelles. The Journal of Chemical Physics, 2015,143(2):024905
    [66] Nicholls A, Sharp KA, Honig B . Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Structure, Function, and Bioinformatics, 1991,11(4):281-296
    [67] Zhou HX, Pang X . Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical Reviews, 2018,118(4):1691-1741
    [68] De Gennes PG, Deutsch JM. Introduction to Polymer Dynamics. Cambridge: Cambridge University Press, 1990: 34-54
    [69] 黄崇海 . 表面活性剂与壁面纵向微沟槽协同减阻性能与机理研究. [博士论文]. 西安: 西安交通大学, 2017: 18-24
    [69] ( Huang Conghai . Collaborative drag reduction performance and mechanism study of surfactant and longitudinal microgroove channel wall. [PhD Thesis]. Xi'an: Xi'an Jiaotong University, 2017: 18-24(in Chinese))
    [70] Cappelaere E, Berret JF, Decruppe JP , et al. Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition. Physical Review E, 1997,56(2):1869-1878
    [71] Helgeson ME, Porcar L, Lopez-Barron C , et al. Direct observation of flow-concentration coupling in a shear-banding fluid. Physical Review Letters, 2010,105(8):084501
    [72] Plimpton S . Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995,117(1):1-19
    [73] Stukowski A . Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling Simul. Mater. Sci. Eng, 2010,18(6):2154-2162
    [74] Quan X, Zhao D, Li L , et al. Understanding the cellular uptake of pH-responsive zwitterionic gold nanoparticles: A computer simulation study. Langmuir, 2017,33(50):14480-14489
    [75] Sambasivam A, Dhakal S, Sureshkumar R . Structure and rheology of self-assembled aqueous suspensions of nanoparticles and wormlike micelles. Molecular Simulation, 2017,44(6):1-9
    [76] Sambasivam A, Sangwai AV, Sureshkumar R . Self-assembly of nanoparticle-surfactant complexes with rodlike micelles: A molecular dynamics study. Langmuir, 2016,32(5):1214-1219
    [77] Nangia S, Sureshkumar R . Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir, 2012,28(51):17666-17671
    [78] Pfeiffer T . Molecular simulations of lipid bilayers in interactions with gold nanoparticles. [PhD Thesis]. Darmstadt: Technische Universit?t, 2016: 9-22
    [79] Zheng Z, Hou G, Xia X , et al. Molecular dynamics simulation study of polymer nanocomposites with controllable dispersion of spherical nanoparticles. Journal of Physical Chemistry B, 2017,121(43):10146-10156
  • 期刊类型引用(10)

    1. 王升文,邱银香,肖伽励. 纳米TiO_2环氧苯丙复合材料的制备及性能研究. 塑料科技. 2023(10): 92-95 . 百度学术
    2. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 . 百度学术
    3. 王治国,郭姜汝,王文娟,徐志锋,贾栋尧. 磨料浆体射流的研究进展. 化工技术与开发. 2022(Z1): 34-41+81 . 百度学术
    4. 李茂林,张浩,玄克勇,石若冉,张志. 添加剂湍流减阻的研究进展. 区域供热. 2022(02): 41-49 . 百度学术
    5. 苏晓辉,张弛,徐志锋,金辉,王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究. 化工学报. 2022(05): 1974-1985 . 百度学术
    6. 陈凌峰,于佳佳,李友荣,黄映洲,李谷元. 向列相溶致液晶旋转黏度研究. 力学学报. 2021(04): 998-1007 . 本站查看
    7. 王治国,蔺靖杰,刘凯,郭姜汝,苏晓辉,张恒. 表面活性剂流体弹性应力对颗粒沉降的影响. 应用力学学报. 2021(04): 1415-1422 . 百度学术
    8. 夏前锦,连龙,瞿建雄,王永生,薛原,王强,赵立豪. 倾斜吹吸控制下湍流边界层减阻的直接数值模拟. 力学学报. 2021(09): 2454-2467 . 本站查看
    9. 杨松默,王刚,曹延林,黄忠意,段慧玲,吕鹏宇. 水下多级微结构液气界面的稳定性和可恢复性研究. 力学学报. 2020(02): 451-461 . 本站查看
    10. 彭绍府,蔡书鹏. 洞塞对表面活性剂减阻管流阻力特性的影响. 湖南工业大学学报. 2020(06): 22-26 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  2928
  • HTML全文浏览量:  535
  • PDF下载量:  458
  • 被引次数: 13
出版历程
  • 收稿日期:  2018-11-06
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回