[1] | 张来平, 贺立新, 刘伟等. 基于非结构/混合网格的高阶精度格式研究进展. 力学进展, 2013, 43(2): 202-23 | [1] | (Zhang Laiping, He Lixin, Liu Wei, et al.Reviews of high-order methods on unstructured and hybrid grid. Advances in Mechanics, 2013, 43(2): 202-23 (in Chinese)) | [2] | Kroll N.ADIGMA - A European initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications. Springer International Publishing, 2010 | [3] | Kroll N, Hirsch C, Bassi F, et al.IDIHOM: Industrialization of High-order Methods - A Top-down Approach. Springer International Publishing, 2015 | [4] | Arnold D, Brezzi F, Cockburn B, et al.Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal, 2002, 39(5): 1749-1779 | [5] | Douglas JJ, Dupont T.Interior penalty procedures for elliptic and parabolic Galerkin method. Lecture Notes in Physics, 1976, 58: 207-216 | [6] | Bassi F, Rebay S.A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics, 1997, 131(2): 267-279 | [7] | Cockburn B, Shu CW.The local discontinuous Galerkin method for time-dependent convection-diffusion systems. Society for Industrial and Applied Mathematics, 1998, 35(6): 2440-2463 | [8] | Bassi F, Rebay S, Mariotti G, et al.A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows//The 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997: 99-108 | [9] | Peraire J, Persson PO.The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM Journal on Scientific Computing, 2008, 30(4): 1806-1824 | [10] | Hartmann R, Houston P.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: Method formulation. International Journal of Numerical Analysis} \& Modeling, 2005, 3(2006): 141-162 | [11] | Hartmann R, Houston P.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations II: Goal-oriented a posteriori error estimation. International Journal of Numerical Analysis & Modeling, 2005, 3(2006): 141-162 | [12] | Van Leer B, Nomura S. Discontinuous Galerkin method for diffusion. AIAA Paper 2005-5108, 2005 | [13] | Van Leer B, Lo M. A discontinuous Galerkin method for diffusion based on recovery. AIAA Paper 2007-4083, 2007 | [14] | Liu H, Yan J.The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM Journal on Numerical Analysis, 2008, 47(1): 675-698 | [15] | Liu H, Yan J.The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Communications in Computational Physics, 2010, 8(3): 541-564 | [16] | Zhang M, Yan J.Fourier type error analysis of the direct discontinuous Galerkin method and its variations for diffusion equations. Journal of Scientific Computing, 2012, 52(3): 638-655 | [17] | Cheng J, Yang X, Liu X, et al.A direct discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. Journal of Computational Physics, 2016, 327: 484-502 | [18] | Cheng J, Liu XD, Yang XQ, et al. A direct discontinuous Galerkin method for computation of turbulent flows on hybrid grids. AIAA Paper 2016-3333, 2016 | [19] | Cockburn B, Luskin M, Shu CW, et al.Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Mathematics of Computation, 2003, 72(242): 577-606 | [20] | Ryan JK, Shu CW, Atkins H.Extension of a post processing technique for the discontinuous Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM Journal on Scientific Computing, 2006, 26(3): 821-843 | [21] | Dumbser M, Zanotti O.Very high order $\text P_\text N\text P_\text M$ schemes on unstructured meshes for the resistive relativistic MHD equations. Journal of Computational Physics, 2009, 228(18): 6991-7006 | [22] | Dumbser M.Arbitrary high order $\text P_\text N\text P_\text M$ schemes on unstructured meshes for the compressible Navier-Stokes equations . Computers & Fluids, 2010, 39(1): 60-76 | [23] | Luo H, Luo L, Nourgaliev R, et al.A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. Journal of Computational Physics, 2010, 229(19): 6961-6978 | [24] | Luo H, Luo L, Ali A, et al.A parallel, reconstructed discontinuous Galerkin method for the compressible flows on arbitrary grids. Communications in Computational Physics, 2010, 9(2): 363-389 | [25] | 张来平, 刘伟, 贺立新等. 基于"静动态"重构的间断Galerkin 有限元/有限体积混合格式. 力学学报, 2010, 42(6): 1013-1022 | [25] | (Zhang Laiping, Liu Wei, He Lixin et al. A class of discontinuous Galerkin/finite volume hybrid schemes based on the `static re-construction' and `dynamic re-construction'. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1013-1022 (in Chinese)) | [26] | 张来平, 李明, 刘伟等. 基于非结构/混合网格的高阶精度DG/FV混合方法研究进展. 空气动力学学报, 2014, 32(6): 717-726 | [26] | (Zhang Laiping, Li Ming, Liu Wei, et al.Recent development of high order DG/FV hybrid schemes. Acta Aerodynamica Sinica, 2014, 32(6): 717-726 (in Chinese)) | [27] | 李明, 刘伟, 张来平等. 高阶精度DG/FV混合方法在二维黏性流动模拟中的推广. 空气动力学学报, 2015, 33(1): 17-24 | [27] | (Li Ming, Liu Wei, Zhang Laiping, et al.Applications of high order hybrid DG/FV methods for 2D viscous flows. Acta Aerodynamica Sinica, 2015, 33(1): 17-24 (in Chinese)) | [28] | Zhang LP, Wei L, He LX, et al.A class of hybrid DG/FV methods for conservation laws I: Basic formulation and one-dimensional systems. Journal of Computational Physics, 2012, 231(4): 1081-1103 | [29] | Zhang LP, Liu W, He LX, et al.A class of hybrid DG/FV methods for conservation laws II: Two-dimensional cases. Journal of Computational Physics, 2012, 231(4): 1104-1120 | [30] | Zhang LP, Liu W, He LX, et al.A Class of hybrid DG/FV methods for conservation laws III: Two-dimensional Euler equations. Communications in Computational Physics, 2012, 12(1): 284-314 | [31] | Zhang LP, Liu W, Li M, et al.A class of DG/FV hybrid schemes for conservation law IV: 2D viscous flows and implicit algorithm for steady cases. Computers & Fluids, 2014, 97(6): 110-125 | [32] | 刘伟, 张来平, 赫新等. 基于Newton/Gauss-Seidel 迭代的高阶精度DGM隐式计算方法研究. 力学学报, 2012, 44(4): 792-796 | [32] | (Liu Wei, Zhang Laiping, He Xin, et al.An implicit algorithm for high-order discontinuous Galerkin method based on Newton/Gauss-Seidel iterations. Chinese Journal of Theoretical and Applied Mechanics. 2012, 44(4): 792-796 (in Chinese)) | [33] | 王年华, 李明, 张来平. 非结构网格二阶有限体积法中黏性通量离散格式精度分析与改进. 力学学报, 2018, 50(3): 527-537 | [33] | (Wang Nianhua, Li Ming, Zhang Laiping.Accuracy analysis and improvement of viscous flux schemes in unstructured second-order finite-volume discretization. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 527-537 (in Chinese)) | [34] | 王年华, 张来平, 赵钟等. 基于制造解的非结构二阶有限体积离散格式的精度测试与验证. 力学学报, 2017, 49(3): 627-637 | [34] | (Wang Nianhua, Zhang Laiping, Zhao Zhong, et al.Accuracy verification of unstructured second-order finite volume discretization schemes based on the method of manufactured solutions. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 627-637 (in Chinese)) | [35] | Arnold DN, Brezzi F, Cockburn B, et al.Discontinuous Galerkin Methods for Elliptic Problems. Discontinous Galerkin Method, Lecture Notes in Computational Science and Engineering, Berlin: Springer, 2000 | [36] | Gautier R, Biau D, Lamballais E.A reference solution of the flow over a circular cylinder at $\text{Re}=40$. Comput. Fluids, 2013, 75: 103-111 | [37] | Rogers SE.Numerical solution of the incompressible Navier-Stokes equations. NASA Technical Memorandum 102199, November, 1990 | [38] | Collis SS.Discontinuous Galerkin methods for turbulence simulation. Center for Turbulence Research Proceedings of the Summer Program, 2002 | [39] | Williamson C.Oblique and parallel modes of vortex shedding in the wake of a cylinder at low Reynolds numbers. J. Fluid Mech, 1989, 206: 579-627 |
|