1 | Binnig G, Quate CF, Gerber C.Atomic force microscope. Physical Review Letters, 1986, 56(9): 930-933 | 2 | Gross L, Schuler B, Pavlicek N, et al.Atomic force microscopy for molecular structure elucidation. Angewandte Chemie-International Edition, 2018, 57(15): 3888-3908 | 3 | de la Torre B, Ellner M, Pou P, et al. Atomic-scale variations of the mechanical response of 2D materials detected by noncontact atomic force microscopy. Physical Review Letters, 2016, 116(24): 245502 | 4 | Kim D, Sahin O.Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy. Nature Nanotechnology, 2015, 10(3): 264-269 | 5 | Dufrene YF, Ando T, Garcia R, et al.Imaging modes of atomic force microscopy for application in molecular and cell biology. Nature Nanotechnology, 2017, 12(4): 295-307 | 6 | Zhang J, Chen P C, Yuan BK, et al.Real-space identification of intermolecular bonding with atomic force microscopy. Science, 2013, 342(6158): 611-614 | 7 | Schillers H, Rianna C, Schape J, et al.Standardized nanomechanical atomic force microscopy procedure (SNAP) for measuring soft and biological samples. Scientific Reports, 2017, 7: 5117 | 8 | García R.Amplitude Modulation Atomic Force Microscopy. WILEY-VCH Verlag & Co. KGaA, Weinheim, Germany, 2010 | 9 | Garcia R, Perez R.Dynamic atomic force microscopy methods. Surface Science Reports, 2002, 47(6-8): 197-301 | 10 | 魏征, 孙岩, 王再冉等. 轻敲模式下原子力显微镜的能量耗散. 力学学报, 2017, 49(6): 1301-1311 | 10 | (Wei Zheng, Sun Yan, Wang Zairan, et al. Energy dissipation in tapping mode atomic force microscopy. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311 (in Chinese)) | 11 | Garcia R, Herruzo ET.The emergence of multifrequency force microscopy. Nature Nanotechnology, 2012, 7(4): 217-226 | 12 | 郑志月, 许瑞, 程志海. 多频原子力探针显微技术. 中国科学: 技术科学, 2016, 46: 437-450 | 12 | (Zheng Zhiyue, Xu Rui, Cheng Zhihai. Multi-frequency atomic force microscopy. Scientia Sinica Technologica, 2016, 46: 437-450 (in Chinese)) | 13 | Santos S, Lai CY, Olukan T, et al.Multifrequency AFM: From origins to convergence. Nanoscale, 2017, 9(16): 5038-5043 | 14 | Payton OD, Picco L, Scott TB.High-speed atomic force microscopy for materials science. International Materials Reviews, 2016, 61(8): 473-494 | 15 | Cartagena-Rivera AX, Wang WH, Geahlen RL, et al.Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope. Scientific Reports, 2015, 5: 11692 | 16 | Haviland DB.Quantitative force microscopy from a dynamic point of view. Current Opinion in Colloid & Interface Science, 2017, 27: 74-81 | 17 | Rodriguez TR, Garcia R.Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Applied Physics Letters, 2004, 84(3): 449-451 | 18 | Martinez NF, Patil S, Lozano JR, et al.Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes. Applied Physics Letters, 2006, 89(15): 153115 | 19 | Proksch R.Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy. Applied Physics Letters, 2006, 89(11): 113121 | 20 | Lozano JR, Garcia R.Theory of multifrequency atomic force microscopy. Physical Review Letters, 2008, 100(7): 076102 | 21 | Stark RW.Dynamics of repulsive dual-frequency atomic force microscopy. Applied Physics Letters, 2009, 94(6): 063109 | 22 | Solares SD, Chawla G.Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy. Measurement Science and Technology, 2010, 21(12): 125502 | 23 | Shi S, Guo D, Luo JB.Enhanced phase and amplitude image contrasts of polymers in bimodal atomic force microscopy. RSC Advances, 2017, 7(19): 11768-11776 | 24 | Shi S, Guo D, Luo JB.Interfacial interaction and enhanced image contrasts in higher mode and bimodal mode atomic force microscopy. RSC Advances, 2017, 7(87): 55121-55130 | 25 | Kiracofe D, Raman A, Yablon D.Multiple regimes of operation in bimodal AFM: Understanding the energy of cantilever eigenmodes. Beilstein Journal of Nanotechnology, 2013, 4: 385-393 | 26 | Chakraborty I, Yablon DG.Cantilever energy effects on bimodal AFM: Phase and amplitude contrast of multicomponent samples. Nanotechnology, 2013, 24(47): 475706 | 27 | Damircheli M, Payam AF, Garcia R.Optimization of phase contrast in bimodal amplitude modulation AFM. Beilstein Journal of Nanotechnology, 2015, 6: 1072-1081 | 28 | Lozano JR, Garcia R.Theory of phase spectroscopy in bimodal atomic force microscopy. Physical Review B, 2009, 79(1): 014110 | 29 | Santos S.Phase contrast and operation regimes in multifrequency atomic force microscopy. Applied Physics Letters, 2014, 104(14): 143109 | 30 | 郭万林, 台国安, 姜燕. 针尖的化学物理力学研究. 力学进展, 2005, 35(4): 585-599 | 30 | (Guo Wanlin, Tai Guoan, Jiang Yan. Research on probe's chemical and physical mechanics. Advances in Mechanics, 2005, 35(4): 585-599 (in Chinese)) | 31 | San Paulo A, Garcia R.Amplitude, deformation and phase shift in amplitude modulation atomic force microscopy: a numerical study for compliant materials. Surface Science, 2001, 471(1-3): 71-79 | 32 | Lai CY, Barcons V, Santos S, et al.Periodicity in bimodal atomic force microscopy. Journal of Applied Physics, 2015, 118(4): 044905 | 33 | Guzman HV, Garcia PD, Garcia R.Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments. Beilstein Journal of Nanotechnology, 2015, 6: 369-379 | 34 | Turner JA, Hirsekorn S, Rabe U, et al.High-frequency response of atomic-force microscope cantilevers. Journal of Applied Physics, 1997, 82(3): 966-979 | 35 | Labuda A, Kocun M, Lysy M, et al.Calibration of higher eigenmodes of cantilevers. Review of Scientific Instruments, 2016, 87(7): 073705 | 36 | Garcia R, San Paulo A.Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Physical Review B, 1999, 60(7): 4961-4967 | 37 | Santos S.Enhanced sensitivity and contrast with bimodal atomic force microscopy with small and ultra-small amplitudes in ambient conditions. Applied Physics Letters, 2013, 103(23): 231603 | 38 | Garcia R, Proksch R.Nanomechanical mapping of soft matter by bimodal force microscopy. European Polymer Journal, 2013, 49: 1897-1906 |
|