[1] | Shabana AA.An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago, 1996 | [2] | 章孝顺, 章定国, 陈思佳等. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究. 物理学报, 2016, 65(9): 094501 | [2] | (Zhang Xiaoshun, Zhang Dingguo, Chen Sijia, et al.Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation. Acta Physica Sinica, 2016, 65(9): 094501 (in Chinese)) | [3] | Gerstmayr J, Sugiyama H, Mikkola A.Review on the absolute nodal coordinate formulation for large deformation analysis of multi-body systems. Journal of Computational and Nonlinear Dynamics, 2013, 8(3): 031016 | [4] | 田强, 张云清, 陈立平等. 柔性多体系统动力学绝对节点坐标方法研究进展. 力学进展, 2010, 40(2): 189-202 | [4] | (Tian Qiang, Zhang Yunqing, Chen Liping, et al.Review of the advances in absolute nodal coordinate formulation in flexible multi-body system dynamics. Advances in Mechanics, 2010, 40(2): 189-202 (in Chinese)) | [5] | 张越, 赵阳, 谭春林等. ANCF 索梁单元应变耦合问题与模型解耦. 力学学报, 2016, 48(6): 1406-1415 | [5] | (Zhang Yue, Zhao Yang, Tan Chunlin, et al.The strain coupling problem and model decoupling of ANCF cable/beam element. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415 (in Chinese)) | [6] | 岳宝增, 于嘉瑞, 吴文军. 多储液腔航天器刚液耦合动力学与复合控制. 力学学报, 2017, 49(2): 390-396 | [6] | (Yue Baozeng, Yu Jiarui, Wu Wenjun.Rigid and liquid coupling dynamics and hybrid control of spacecraft with multiple propellant tanks. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 390-396 (in Chinese)) | [7] | 胡景晨, 王天舒. 一种$O(n)$ 算法复杂度的递推绝对节点坐标法研究. 力学学报, 2016, 48(5): 1172-1183 | [7] | (Hu Jingchen, Wang Tianshu.A recursive absolute nodal coordinate formulation with $O(n)$ algorithm complexity. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1172-1183 (in Chinese)) | [8] | 刘铖, 田强, 胡海岩. 基于绝对节点坐标的多柔体系统动力学高效计算方法. 力学学报, 2010, 42(6): 1197-1205 | [8] | (Liu Cheng, Tian Qiang, Hu Haiyan.Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1197-1205 (in Chinese)) | [9] | García Vallejo D, Mayo J, Escalona JL, et al.Efficient evaluation of the elastic forces and the jacobian in the absolute nodal coordinate formulation. Nonlinear Dynamic, 2004, 35: 313-329 | [10] | Shabana AA.ANCF tire assembly model for multibody system applications. Journal of Computational and Nonlinear Dynamics, 2015, 10(2): 024504 | [11] | Omar MA, Shabana AA, Mikkola A, et al.Multibody system modeling of leaf springs. Journal of Vibration and Control, 2004, 10(11): 1601-1638 | [12] | Yu ZQ, Liu YG, Tinsley B, et al.Integration of geometry and analysis for vehicle system applications: Continuum-based leaf spring and tire assembly. Journal of Computational and Nonlinear Dynamics, 2015 11(3): 031011 | [13] | Dufva K, Shabana AA.Analysis of thin plate structures using the absolute nodal coordinate formulation. Proceedings of the Institution of Mechanical Engineers Part K: Journal of Multibody Dynamics, 2005, 219(4): 345-355 | [14] | Wang JS, Li ZK, Jiang QB. The analysis of composite leaf spring by finite element method and experimental measurements//FISITA 2012 World Automotive Congress Proceedings-Volume 7: Vehicle Design and Testing, Beijing, China, 2012-11-27, 803 | [15] | Zhou ZF, Guo WF, Shen TJ, et al.Research and application on dynamic stiffness of leaf spring. FISITA 2012 World Automotive Congress Proceedings-Volume 10: Chassis Systems and Integration Technology Beijing, China, 2012-11-27, 2012, 111 | [16] | Nunney MJ.Light and Heavy Vehicle Technology. Oxford: Society for Neuroscience, 2006: 352 | [17] | Dunaevskii B.Calculation of solid beams and flat springs (leaf springs) of varying cross-section. Soviet Engineering Research, 1981, 61(4): 36-38 | [18] | 周孔亢, 陆建辉, 侯永涛等. 基于RecurDyn的钢板弹簧动力学模型的建立与参数辨识. 机械工程学报, 2014, 50(4): 128-134 | [18] | (Zhou Kongkang, Lu Jianhui, Hou Yongtao, et al.Dynamics modeling and parameter identification of leaf spring based on RecurDyn. Journal of Mechanical Engineering, 2014, 50(4): 128-134 (in Chinese)) | [19] | 段亮, 杨树凯, 宋传学等. 平衡悬架钢板弹簧动态特性的研究. 机械工程学报, 2016, 52(6): 153-158 | [19] | (Duan Liang, Yang Shukai, Song Chuanxue, et al.Research on dynamic characteristics of the tandem suspension leaf spring. Journal of Mechanical Engineering, 2016, 52(6): 153-158 (in Chinese)) | [20] | Wriggers P, Zavarise G.On contact between three-dimensional beams undergoing large deflections. Communications in Numerical Methods in Engineering, 1997, 13(6): 429-438 | [21] | Zavarise G, Wriggers P.Contact with friction between beams in 3-D space. International Journal for Numerical Methods in Engineering, 2000, 49: 977-1006 | [22] | Litewka P, Wriggers P.Contact between 3D beams with rectangular cross-sections. International Journal for Numerical Methods in Engineering, 2002, 53: 2019-2041 | [23] | Litewka P.Hermite polynomial smoothing in beam-tobema frictional contact. Computational Mechanics, 2007, 40: 815-826 | [24] | Litewka P.Smooth frictional contact between beams in 3D//Nack-enhorst U, Wriggers P. (eds.) IUTAM Symposium on Computational Contact Mechanics. IUTAM Bookseries. Dordrecht: Springer, 2007, 157-176 | [25] | Konyukhov A, Schweizerhof K.Geometrically exact covariant approach for contact between curves. Computer Methods in Applied Mechanics and Engineering, 2010, 199: 2510-2531 | [26] | Litewka P.Multiple-point beam-to-beam contact finite element//19th International Conference on Computer Methods in Mechanics, Warsaw, Poland, 9-12, May, 2011 | [27] | Durville D.Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Computational Mechanics, 2012, 49(6): 687-707 | [28] | Wang QT, Tian Q, Hu HY.Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation. Nonlinear Dynamics, 2014, 77(4): 1411-1425 | [29] | Wang QT, Tian Q, Hu HY.Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dynamics, 2016, 83(4): 1919-1937 | [30] | Zahavi E.Analysis of a contact problem in leaf springs. Mechanics Research Communications, 1992, 19(1): 21-27 | [31] | Shabana AA. Computational Continuum Mechanics.London: Cambridge University Press. 2012: 46-93 | [32] | Liu C, Tian Q, Hu HY.New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dynamics, 2012, 70(3): 1903-1918 | [33] | Gantoi FM, Brown MA, Shabana AA.Finite element modeling of the contact geometry and deformation in biomechanics. Journal of Computational and Nonlinear Dynamics, 2013, 8(4): 041013 | [34] | Shabana AA.ANCF reference node for multibody system analysis. Proceedings of the Institution of Mechanical Engineers Part K: Journal of Multibody Dynamics, 2015, 229(1): 109-112 | [35] | Shabana AA.Dynamics of Multibody Systems. Cambridge: Cambridge University Press, 2005. | [36] | 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用. [博士论文]. 武汉: 华中科技大学, 2009 | [36] | (Tian Qiang, Flexible multibody dynamics research and application based on the absolute nodal coordinate method. [PhD Thesis]. Wuhan: Huazhong University of Science and Technology, 2009 (in Chinese)) | [37] | Yu ZQ, Shabana AA.Mixed-coordinate ancf rectangular finite element. Journal of Computational and Nonlinear Dynamics, 2015, 10(6): 061003 | [38] | Shabana AA, Zaazaa KE, Sugiyama H.Railroad Vehicle Dynamics: A Computational Approach. Boca Raton: CRC Press. 2007: 145-147 |
|