[1] | 戴晴, 李传胪, 陈国强等. 低温等离子体激励宽带电磁波信号的实验研究. 电子信息对抗技术, 2009, 24(5): 72-74 | [1] | (Dai Qing, Li Chuanlu, Chen Guoqiang, et al.Experimental study of wideband electromagnetic radiation from plasma cloud. Electronic Information Warfare Technology, 2009, 24(5): 72-74 (in Chinese)) | [2] | Kolsky H.Electromagnetic waves emitted on detonation of explosives. Nature, 1954, 173: 77 | [3] | Cook MA.The Science of High Explosives. New York: Reinhold Publishing, 1958: 440 | [4] | Boronin AP, Velmin VA, Medvedev YA, et al.Experimental study of the electromagnetic field in the near zone of explosions produced by solid explosives. Zhurnal Prikladnoi Mekhaniki I Tekhnicheskoi Fiziki, 1968, 9(6): 99-103 | [5] | Boronin AP, Kapinos VN, Krenev SA, et al.Physical mechanism of electromagnetic field generation during the explosion of condensed explosive charges. Combustion Explosion and Shock Waves, 1990, 26: 597-602 | [6] | Walker CW. Observations of the electromagnetic signals from high explosive detonation. Lawrence Radiation Laboratory Report, 1970, UCRL-72150 | [7] | van Lint VAJ. Electromagnetic emission from chemical explosions. IEEE Transactions on Nuclear Science, 1982, NS-29(6): 1844-1849 | [8] | Soloviev SP, Surkov VV, Sweeney JJ.Quadrupolar electromagnetic field from detonation of high explosive charges on the ground surface. Journal of Geophysical Research, 2002, 107: B62119 | [9] | Adushkin VV, Soloviev SP.Generation of electric and magnetic fields by area, surface, and underground explosions. Combustion Explosion and Shock Waves, 2004, 40(6): 649-657 | [10] | Soloviev SP, Sweeney JJ.Generation of electric and magnetic field during detonation of high explosive charges in boreholes. Journal of Geophysical Research, 2005, 110: B01312 | [11] | Fine JE. Estimates of the electromagnetic radiation from detonation of conventional explosives. Army Research Laboratory Report, 2001, ARL-TR-2447 | [12] | Kuhl AL, White DA, Kirkendall BA.Kirkendall. Electromagnetic waves from TNT explosions. Journal of Electromagnetic Analysis and Applications, 2014, 6: 280-295 | [13] | Srnka LJ.Spontaneous magnetic field generation in hypervelocity impacts//Lunar & Planetary Science Conference, 1977, 8: 785-792 | [14] | 陈生玉, 孙新利, 钱世平等. 化爆引起的电磁辐射. 爆炸与冲击, 1997, 17(4): 363-368 | [14] | (Chen Shengyu, Sun Xinli, Qian Shiping, et al.Electromagnetic radiation caused by chemical explosion. Explosion and Shock Waves, 1997, 17(4): 363-368 (in Chinese)) | [15] | 曹景阳, 谢树果, 苏东林等. 航天火工品爆炸引起的电磁干扰测量. 北京航空航天大学学报, 2011, 37(11): 1384-1394 | [15] | (Cao Jingyang, Xie Shuguo, Su Donglin, et al.Electromagnetic interference caused by aerospace explosives. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1384-1394 (in Chinese)) | [16] | 王长利, 李迅, 刘晓新等. 典型炸药爆炸过程的电磁辐射实验研究. 兵工学报, 2014, 35(S2): 188-192 | [16] | (Wang Changli, Li Xun, Liu Xiaoxin, et al.The experimental research on the electromagnetic radiation aroused by detonation of explosive. Acta Armamentarii, 2014, 35(S2): 188-192 (in Chinese)) | [17] | 陈鸿, 何勇, 潘绪超等. 铝添加物对炸药爆轰过程中的电磁辐射影响实验研究. 科学发现, 2016, 4(6): 398-404 | [17] | (Chen Hong, He Yong, Pan Xuchao, et al.Experimental research on the effect of aluminum additive on the electromagnetic radiation in detonation process. Science Discovery, 2016, 4(6): 398-404 (in Chinese)) | [18] | Eichhorn G.Measurements of the light flash produced by high velocity particle impact. Planetary and Space Science, 1975, 23(11): 1519-1525 | [19] | Lee N, Close S, Goel A, et al. Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials. Physics of Plasmas, 2013, 20(3): 032901 | [20] | 唐恩凌, 张庆明, 张健. 超高速碰撞LY12铝靶产生膨胀等离子体云的电导率测量. 强激光与粒子束, 2009, 21(2): 297-300 | [20] | (Tang Enling, Zhang Qingming, Zhang Jian.Conductivity measurement of an expanding plasma cloud generated by hypervelocity impact LY12 aluminum target. High Power Laser and Particle Beams, 2009 21(2): 297-300 (in Chinese)) | [21] | Lin L, Weng CS, Chen QZ, et al.Study on the effects of ionization seeds on pulse detonation characteristics. Aerospace Science and Technology, 2017, 71: 128-135 | [22] | 王年华, 张来平, 赵钟等. 基于制造解的非结构二阶有限体积离散格式的精度测试与验证. 力学学报, 2017, 49(3): 627-637 | [22] | (Wang Nianhua, Zhang Laiping, Zhao Zhong, et al.Accuracy verification of unstructured second-order finite volume discretization schemes based on the method of manufactured solutions. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 627-637 (in Chinese)) | [23] | 马天宝, 任会兰, 李健等. 爆炸与冲击问题的大规模高精度计算. 力学学报, 2016, 48(3): 599-608 | [23] | (Ma Tianbao, Ren Huilan, Li Jian, et al.Large scale high precision computation for explosion and impact problems. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608 (in Chinese)) | [24] | 宁建国, 原新鹏, 马天宝等. 计算动力学中的伪弧长方法研究. 力学学报, 2017, 49(3): 703-715 | [24] | (Ning Jianguo, Yuan Xinpeng, Ma Tianbao, et al.Pseudo arc-length numerical algorithm for computational dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 703-715 (in Chinese)) | [25] | 张树海. 加权紧致格式与WENO格式的比较研究. 力学学报, 2016, 48(2): 336-347 | [25] | (Zhang Shuhai.The comparison of weighted compact schemes and WENO scheme. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 336-347 (in Chinese)) | [26] | 李海燕, 李志辉, 吕治国等. 自由活塞压缩管ALE方法数值模拟. 力学学报, 2016, 48(2): 348-352 | [26] | (Li Haiyan, Li Zhihui, Lü Zhiguo, et al.Arbitrary Lagrangian Eulerian simulation of free piston compression tube. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 348-352 (in Chinese)) | [27] | Kitamura K, Shima E.Pressure-equation-based SLAU2 for oscilla-tion-free, supercritical flow simulations. Computers and Fluids, 2018, 163: 86-96 | [28] | Zeng QL, Aydemir NU, Lien FS, et al.Extension of staggered-grid-based AUSM-family schemes for use in nuclear safety analysis codes. International Journal of Multiphase Flow, 2017, 93: 17-32 | [29] | Qu F, Sun D, Zou G, et al.An improvement on the AUSMPWM scheme for hypersonic heating predictions. International Journal of Heat and Mass Transfer, 2017, 108: 2492-2501 | [30] | Min Daeho KH, Lee H, Lee CG, et al.Accurate and efficient computations of phase-changing flows in thermal vapor compressors. Applied Thermal Engineering, 2018, 128: 320-334 | [31] | Gao ZX, Xue HC, Zhang ZC, et al.Ahybrid numerical scheme for aeroheating computation of hypersonic reentry vehicles. International Journal of Heat and Mass Transfer, 2018, 116: 432-444 | [32] | Qu F, Sun D, Yan C.A new flux splitting scheme for the Euler equations II: E-AUSMPWAS for all speeds. Commun Nonlinear Sci Numer Simulat, 2018, 57: 58-79 | [33] | Paillere H, Corre C, Cascalse JRG.On the extension of the AUSM+ scheme to compressible two-fluid models. Computers and Fluids, 2003, 32: 891-916 | [34] | Phongthanapanich S.A parameter-free AUSM-based scheme for healing carbuncle phenomenon. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(3): 691-701 | [35] | Zeng QL, Aydemir NU, Lien FS, et al.Comparison of implicit and explicit AUSM-family schemes for compressible multiphase flows. International Journal for Numerical Methods in Fluids, 2015, 77: 43-61 | [36] | Liou MS.A sequel to AUSM, Part II: AUSM+-up for all speeds. Journal of Computational Physics, 2006, 214: 137-170 | [37] | Zha GC, Bilgen E.Numerical simulations of Euler equations by using a new flux splitting scheme. International Journal for Numerical Method in Fluids, 1993, 17: 115-144 | [38] | 刘成, 姜秀杰, 刘波等. 大气电导率测量技术的发展. 科技导报, 2010, 28(17): 95-99 | [38] | (Liu Cheng, Jiang Xiujie, Liu Bo, et al.Progress of atmospheric electrical conductivity measurement technology. Science & Technology Review, 2010, 28(17): 95-99 (in Chinese)) |
|