EI、Scopus 收录
中文核心期刊

高超声速飞行器气动热关联换算方法研究

赵金山, 张志刚, 石义雷, 陈挺, 肖雨, 粟斯尧, 廖军好, 彭治雨

赵金山, 张志刚, 石义雷, 陈挺, 肖雨, 粟斯尧, 廖军好, 彭治雨. 高超声速飞行器气动热关联换算方法研究[J]. 力学学报, 2018, 50(5): 1235-1243. DOI: 10.6052/0459-1879-18-070
引用本文: 赵金山, 张志刚, 石义雷, 陈挺, 肖雨, 粟斯尧, 廖军好, 彭治雨. 高超声速飞行器气动热关联换算方法研究[J]. 力学学报, 2018, 50(5): 1235-1243. DOI: 10.6052/0459-1879-18-070
Zhao Jinshan, Zhang Zhigang, Shi Yilei, Chen Ting, Xiao Yu, Su Siyao, Liao Junhao, Peng Zhiyu. RESEARCH ON THE CONVERSION METHOD OF AEROHEATING ENVIRONMENT OF HYPERSONIC VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1235-1243. DOI: 10.6052/0459-1879-18-070
Citation: Zhao Jinshan, Zhang Zhigang, Shi Yilei, Chen Ting, Xiao Yu, Su Siyao, Liao Junhao, Peng Zhiyu. RESEARCH ON THE CONVERSION METHOD OF AEROHEATING ENVIRONMENT OF HYPERSONIC VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1235-1243. DOI: 10.6052/0459-1879-18-070
赵金山, 张志刚, 石义雷, 陈挺, 肖雨, 粟斯尧, 廖军好, 彭治雨. 高超声速飞行器气动热关联换算方法研究[J]. 力学学报, 2018, 50(5): 1235-1243. CSTR: 32045.14.0459-1879-18-070
引用本文: 赵金山, 张志刚, 石义雷, 陈挺, 肖雨, 粟斯尧, 廖军好, 彭治雨. 高超声速飞行器气动热关联换算方法研究[J]. 力学学报, 2018, 50(5): 1235-1243. CSTR: 32045.14.0459-1879-18-070
Zhao Jinshan, Zhang Zhigang, Shi Yilei, Chen Ting, Xiao Yu, Su Siyao, Liao Junhao, Peng Zhiyu. RESEARCH ON THE CONVERSION METHOD OF AEROHEATING ENVIRONMENT OF HYPERSONIC VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1235-1243. CSTR: 32045.14.0459-1879-18-070
Citation: Zhao Jinshan, Zhang Zhigang, Shi Yilei, Chen Ting, Xiao Yu, Su Siyao, Liao Junhao, Peng Zhiyu. RESEARCH ON THE CONVERSION METHOD OF AEROHEATING ENVIRONMENT OF HYPERSONIC VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1235-1243. CSTR: 32045.14.0459-1879-18-070

高超声速飞行器气动热关联换算方法研究

详细信息
    作者简介:

    1)彭治雨, 研究员, 主要研究方向高超声速气动热与热防护、高超声速边界层转捩. E-mail: pengzhiyu65536@163.com

    通讯作者:

    彭治雨

  • 中图分类号: V211.7;

RESEARCH ON THE CONVERSION METHOD OF AEROHEATING ENVIRONMENT OF HYPERSONIC VEHICLE

  • 摘要: 气动热风洞实验是地面研究和预测飞行器气动热环境的重要手段之一, 但由于风洞实验模拟能力的限制, 风洞实验的流场参数和模型的几何尺度都会与实际飞行情况存在一定的差别, 导致地面风洞实验中得到的模型表面气动加热率数据无法直接用于飞行条件下的热环境预测和热防护设计. 以往通过针对具体飞行器的试验结果进行数据拟合后外插的气动热关联换算方法指向性较强, 没有考虑到气动热的具体影响参数, 存在一定局限性, 难以外推应用于其他外形的飞行器. 为解决通过气动热风洞实验数据外推预测飞行条件下气动热的技术难题, 基于无量纲NS方程和边界层理论分析研究了影响气动热的主要参数, 并通过推导化简边界层近似解热流公式, 针对层流流态建立了气动热关联换算方法, 可以考虑当地边界层外缘参数的影响, 具有一定通用性. 在此基础上, 利用建立的方法将Reentry-F飞行器缩比模型的风洞实验数据换算到该飞行器飞行条件下的典型工况, 并与飞行测量结果进行了比较, 外推预测结果与飞行测量结果符合较好, 表明建立的关联方法可以用于气动热风洞实验数据的外推换算.
    Abstract: Wind tunnel experiment is a key means to research and predict aeroheating for hypersonic vehicles. The flow field parameters and model scales in wind tunnel are different from flight condition, owing to the limitation of its simulation capability. The aeroheating data obtained from wind tunnel experiments can not be directly used for the aeroheating prediction and thermal protection system design in flight condition. So the method of predicting the aeroheating environment on flight condition, by using the wind tunnel experimental data, has been a technically difficult problem. In the past, the correlation and extrapolation method of wind tunnel aeroheating experiment data for specific aircrafts has a strong directionality, because this method is a kind of data fitting based on aeroheating data and does not take into account the specific parameters of aeroheating. It has certain limitations and is difficult to extrapolate to other shapes of aircraft. To solve the problem of the wind tunnel experimental data extrapolation, the main parameters of the influence of aeroheating were analyzed on the basis of the dimensionless Navier-Stokes equations and boundary layer equations, and the correlation and extrapolation method was developed for laminar and turbulence conditions by deducing the approximate solution of the aeroheating. Because the parameters of the local boundary layer edge can be taken into consideration, the correlation method has certain versatility. Then the experimental data of scale model on Reentry-F was obtained from wind tunnel experiments, the correlation analysis and validation for Reentry-F configuration was accomplished, the wind tunnel experimental data was extrapolated to flight condition by the extrapolation method and it agreed well with flight data. It showed that the method can be used for extrapolation of aeroheating experimental data, and multiple points of flight condition can be extrapolated from a few experimental results.
  • [1] Edwards CL, Stanley RC. Predictions of entry heating for lower surface of Shuttle orbiter. National Aeronautics and Space Administration, 1983, NASA/TM-84624
    [2] Quinn RD, Olinger FV. Heat-transfer measurements obtained on the X-15 airplane including correlations with wind-tunnel results. National Aeronautics and Space Administration, 1969, NASA/TM-X-1705
    [3] Quinn RD, Palitz M. Comparison of measured and calculated turbulent heat transfer on the X-15 airplane at angles of attack up to $19.0^{\circ}$. National Aeronautics and Space Administration, 1966, NASA/TM-X-1291
    [4] Robert DQ, Kuhl AE. Comparison of flight-measured and calculated turbulent heat transfer on the X-15 airplane at Mach numbers from 2.5 to 6.0 at low angles of attack. National Aeronautics and Space Administration, 1964, NASA/TM-X-939
    [5] Bertin JJ, Goodrich WD.Effects of surface temperature and Reynolds number on leeward shuttle heating. Journal of Spacecraft and Rockets, 1976, 13(8): 473-480
    [6] John AC, Joseph WH. Space shuttle wing leading edge heating environment prediction derived from development flight data. National Aeronautics and Space Administration, 1983, NASA/CP-2283, Part2: 1083-1109
    [7] Vernon TH. Leeward centerline and side fuselage entry heating predictions for the space shuttle orbiter. National Aeronautics and Space Administration ,1983, NASA/CP-2283, Part2: 913-947
    [8] Elam KH, Paul WP. Flight test derived heating math models for critical locations on the orbiter during reentry. National Aeronautics and Space Administration, 1983, NASA/CP-2283, Part2: 703-718
    [9] Harthun MH, Blumer CB, Miller BA. Orbiter windward surface entry heating: post-orbital flight test program update. National Aeronautics and Space Administration, 1983, NASA/CP-2283, Part2: 781-804
    [10] Haney JW. Orbiter entry heating lessons learned from development flight test program. National Aeronautics and Space Administration, 1983, NASA/CP-2283, Part2: 719-751
    [11] Miller CG, Micol JR, Gnoffo PA. Laminar heat-transfer distributions on biconics at incidence in hypersonic hypervelocity flows. National Aeronautics and Space Administration, 1985, NASA/TP-2213
    [12] Hozumi K, Yamamoto Y, Masson A, et al. A study for prediction of flight aerodynamic heating using HYFLEX flight and wind tunnel data. AIAA Paper 2001-1826, 2001
    [13] Scott AB, Thomas JH, Weilmuenster KJ, et al.X-38 Experimental Aeroheating at Mach 10. Journal of Spacecraft and Rockets, 2004, 41(2): 171-178
    [14] Thomas JH, Scott AB.X-38 experimental aerothermodynamics. AIAA Paper, 2000, 2000-2685
    [15] Horvath TJ, Berry SA.X-33 experimental aeroheating at Mach 6 using phosphor thermography. AIAA Paper 99-3558, 1999
    [16] Ronald GV. Development of a scaling technique for duplication of in-flight aerodynamic heat flux distribution in ground test facilities. AIAA Paper 2008-2670, 2008
    [17] 姜宗林, 罗长童, 胡宗民等. 高超声速风洞实验数据的多维空间相关理论与关联方法. 中国科学, 2015, 45(12): 124705/1-124705/12
    [17] (Jiang Zonglin, Luo Changtong, Hu Zongmin, et al. Multi-dimensional interrelation theory for hypersonic wind-tunnel experimental data and its correlation algorithm. Scientia Sinica, 2015, 45(12): 124705/1-124705/12 (in Chinese))
    [18] 曾明, 林贞彬, 柳军等. 非平衡流模拟参数有效性的数值分析. 力学学报, 2009, 41(2): 177-184
    [18] (Zeng Ming, Lin Zhenbin, Liu Jun, et al.Numerical analysis of the validity of binary scaling parameter in nonequilibrium flow. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 177-184 (in Chinese))
    [19] 沙心国, 刘荣健, 苏鹏辉等. 某组合体模型气动热数据相关性研究. 气体物理, 2016, 1(4): 43-50
    [19] (Sha Xinguo, Liu Rongjian, Su Penghui, et al.Correlation of aerodynamic heating data of a combination model. Physics of Gases, 2016, 1(4): 43-50 (in Chinese))
    [20] 纪锋, 沙心国, 毕志献.平板锥组合外形气动热数据关联性分析//中国力学大会, 上海市, 2015年8 月15-18日. 2015
    [20] (Ji Feng, Sha Xinguo, Bi Zhixian. Correlation analysis of aeroheating data of the combination of plate and cone//The Chinese Congress of Theoretical and Applied Mechanics, ShangHai, 2015-08-15-18. 2015 (in Chinese))
    [21] 徐翔, 彭治雨, 石义雷等. 高超声速锥体表面凸起物分离干扰区气动力/热关联计算方法. 空气动力学学报, 2009, 27(2): 260-264
    [21] (Xu Xiang, Peng Zhiyu, Shi Yilei, et al.The correlative calculation methods of aerodynamic force and heating for hypersonic cone with bulge. Acta Aerodynamic Sinica, 2009, 27(2): 260-264 (in Chinese))
    [22] Barnhardt M, Graham V. Detached eddy simulation of hypersonic base flows during atmospheric entry. AIAA Paper 2006-3575, 2006
    [23] Robert LW, Ernest VZ. Flight measurements of boundary-layer transition on a $5^{\circ}$ half-angle cone at a freestream mach number of 20 (Reentry F). National Aeronautics and Space Administration, 1971, NASA/TM-X-2253
    [24] 傅德薰, 马延文. 计算流体力学. 北京: 高等教育出版社, 2002
    [24] (Fu Dexun, Ma Yanwen. Computational Fluid Dynamics.Beijing: Higher Dducation Press, 2002 (in Chinese))
    [25] 瞿章华, 刘伟. 高超声速空气动力学. 长沙: 国防科技大学出版社, 2001
    [25] (Qu Zhanghua, Liu Wei. Hypersonic Aerodynamics.Changsha: National University of Defense Technology Press, 2001 (in Chinese))
    [26] 姜宗林, 李进平, 赵伟等. 长试验时间爆轰驱动激波风洞技术研究. 力学学报, 2012, 44(5): 824-831
    [26] (Jiang Zonglin, Li Jinping, Zhao Wei, et al.Investigating into techniques for extending the test-duration of detonation-driven shock tunnels. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824-831 (in Chinese))
    [27] 汪运鹏, 刘云峰, 苑朝凯等. 长试验时间激波风洞测力技术研究. 力学学报, 2016, 48(3): 545-556
    [27] (Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, et al.Study on force measurement in long-test duration shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(3): 545-556 (in Chinese))
    [28] 孟宝清, 韩桂来, 姜宗林. 结构振动对大型激波风洞气动力测量的干扰. 力学学报, 2016, 48(1): 102-110
    [28] (Meng Baoqing, Han Guilai, Jiang Zonglin.Theoretical investigation on aerodynamic force measurement interfered by structural vibrations in large hock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 102-110 (in Chinese))
    [29] 黄志澄, 程永鑫. 航天空气动力学. 北京: 中国宇航出版社, 2009
    [29] (Huang Zhicheng, Cheng Yongxin. Space Aerodynamic.Beijing: China Aerospace Press, 2009 (in Chinese))
    [30] Fay JA, Riddell FR.Theory of stagnation point heat transfer in dissociated air. Journal of the Aerospace Sciences, 1985, 25(2): 73-85
    [31] Lees L.Laminar heat transfer over blunt nosed bodies at hypersonic flight speeds. Journal of Jet Propulsion, 1956, 26(4): 259-269
    [32] 黄志澄. 高超声速飞行器空气动力学. 北京: 国防工业出版社, 1995
    [32] (Huang Zhicheng.Aerodynamics of Hypersonic Flight Vehicles. Beijing: National Defence Industry Press, 1995 (in Chinese))
    [33] 高莹莹, 史增民, 李旭东等. 基于Reentry F的气动热工程方法及转捩研究. 导弹与航天运载技术, 2015, 3: 48-52.
    [33] (Gao Yingying, Shi Zengmin, Li Xudong, et al.Research on the aerodynamic heating engineering method and transition correlation based on reentry F. Missiles and Space Vehicles, 2015, 3: 48-52 (in Chinese))
    [34] 彭治雨, 孔荣宗.激波风洞气动热试验数据误差与不确定度研究//第十六届全国高超声速气动力/热学术交流会, 三亚, 2011年10月25-27日. 2011: 578-585
    [34] (Peng Zhiyu, Kong Rongzong.Error and indeterminacy analysis for aeroheating testing Data in shock tunnel//The 16th National Conference on Hypersonic Aerodynamics and Aeroheating, Sanya, 2011-10-25-27. 2011: 578-585 (in Chinese))
  • 期刊类型引用(7)

    1. 张志刚,赵金山,粟斯尧,孔荣宗,陈挺. 机动弹头舵轴热环境分析. 南京航空航天大学学报. 2022(04): 583-591 . 百度学术
    2. 胡守超,庄宇,李贤,江涛. 高超声速气动热标模HyHERM-Ⅰ试验. 航空学报. 2022(S2): 236-251 . 百度学术
    3. 刘智勇,禹旻,杨武兵. 温度对高速平板边界层转捩雷诺数的影响. 空气动力学学报. 2020(02): 308-315 . 百度学术
    4. 张军,李伟,方国东,梁军,孟松鹤. 树脂基防隔热复合材料高温响应分析方法研究进展. 宇航学报. 2020(06): 739-748 . 百度学术
    5. 桂业伟,刘磊,魏东. 长航时高超声速飞行器的综合热效应问题. 空气动力学学报. 2020(04): 641-650 . 百度学术
    6. 李伟,方国东,李玮洁,王兵,梁军. 碳纤维增强复合材料微观烧蚀行为数值模拟. 力学学报. 2019(03): 835-844 . 本站查看
    7. 刘传振,白鹏,王骥飞,刘强. 给定前缘线平面形状的密切锥乘波体设计方法. 力学学报. 2019(04): 991-997 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1865
  • HTML全文浏览量:  329
  • PDF下载量:  291
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-03-13
  • 刊出日期:  2018-09-17

目录

    /

    返回文章
    返回