EI、Scopus 收录
中文核心期刊

含气泡油滴撞击油膜壁面时气泡的变形与破裂

周剑宏, 童宝宏, 王伟, 苏家磊

周剑宏, 童宝宏, 王伟, 苏家磊. 含气泡油滴撞击油膜壁面时气泡的变形与破裂[J]. 力学学报, 2018, 50(2): 427-437. DOI: 10.6052/0459-1879-17-405
引用本文: 周剑宏, 童宝宏, 王伟, 苏家磊. 含气泡油滴撞击油膜壁面时气泡的变形与破裂[J]. 力学学报, 2018, 50(2): 427-437. DOI: 10.6052/0459-1879-17-405
Zhou Jianhong, Tong Baohong, Wang Wei, Su Jialei. DEFORMATION AND RUPTURE OF BUBBLE WHEN THE HOLLOW DROPLET IMPACTS ON THE OIL FILM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 427-437. DOI: 10.6052/0459-1879-17-405
Citation: Zhou Jianhong, Tong Baohong, Wang Wei, Su Jialei. DEFORMATION AND RUPTURE OF BUBBLE WHEN THE HOLLOW DROPLET IMPACTS ON THE OIL FILM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 427-437. DOI: 10.6052/0459-1879-17-405
周剑宏, 童宝宏, 王伟, 苏家磊. 含气泡油滴撞击油膜壁面时气泡的变形与破裂[J]. 力学学报, 2018, 50(2): 427-437. CSTR: 32045.14.0459-1879-17-405
引用本文: 周剑宏, 童宝宏, 王伟, 苏家磊. 含气泡油滴撞击油膜壁面时气泡的变形与破裂[J]. 力学学报, 2018, 50(2): 427-437. CSTR: 32045.14.0459-1879-17-405
Zhou Jianhong, Tong Baohong, Wang Wei, Su Jialei. DEFORMATION AND RUPTURE OF BUBBLE WHEN THE HOLLOW DROPLET IMPACTS ON THE OIL FILM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 427-437. CSTR: 32045.14.0459-1879-17-405
Citation: Zhou Jianhong, Tong Baohong, Wang Wei, Su Jialei. DEFORMATION AND RUPTURE OF BUBBLE WHEN THE HOLLOW DROPLET IMPACTS ON THE OIL FILM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 427-437. CSTR: 32045.14.0459-1879-17-405

含气泡油滴撞击油膜壁面时气泡的变形与破裂

基金项目: 国家自然科学基金(51475135), 清华大学摩擦学国家重点实验室开放基金 (SKLTKF17B01)和安徽工业大学研究生创新基金(2015040)资助项目.
详细信息
    作者简介:

    null

    作者简介:童宝宏,教授,主要研究方向:流体流动与润滑力学、现代机械设计理论与方法. E-mail:bhtong@ahut.edu.cn

  • 中图分类号: O359;

DEFORMATION AND RUPTURE OF BUBBLE WHEN THE HOLLOW DROPLET IMPACTS ON THE OIL FILM

  • 摘要: 油--气润滑过程中润滑油液滴受高速气流扰动易形成含气泡油滴,微气泡将对油滴撞击壁面时的运动过程以及壁面油膜 层的形成质量产生重要影响. 基于耦合的水平集--体积分数 方法,对含气泡油滴撞击油膜壁面行为进行数值模拟研究, 考察含气泡油滴撞击油膜壁面时气泡的变形运动过程,探讨气泡破裂的动力学机制,分析气泡大小、碰撞速度和液体黏度等因素对含气 泡油滴撞壁过程中气泡变形特征参数的影响规律. 研究表明:含气泡油滴撞击油膜壁面后气泡会发生变形,并破裂形成膜液滴;气泡随同 液滴运动过程中,气泡内外压力和速度梯度变化是使气泡发生破裂的主要诱因. 气泡大小对气泡破裂方式影响较大,气泡较小时发生单 点破裂,而气泡较大时更容易发生多处破裂. 不同大小气泡受力差异较大,气泡大小与破裂发生时刻没有明显相关性. 碰撞速度和液体 黏度对气泡的变形、破裂和破裂发生时刻都具有一定的影响. 碰撞速度越大,油滴动能越大,更容易产生气泡变形和破裂现象. 液体黏 度增大,在油滴撞壁运动前期促进气泡变形,而在运动后期可以阻延气泡破裂行为发生.
    Abstract: Hollow oil droplets are easily formed by the high velocity air turbulence in the process of oil-gas lubrication. The micro bubble has an important influence on the movement process and oil film formation quality when an oil droplet impacting on the wall. The coupled level set and volume of fluid (CLSVOF) method is adopted to simulate the impact of a hollow droplet on the oil film wall. The dynamic mechanism of bubble rupture is investigated by investigating the deformation and movement of bubbles when the hollow droplets are impacted on the wall of the oil film. And the influence of bubble size, collision velocity and liquid viscosity on the characteristic parameters of bubble deformation in the process of bubble wall collision is also analyzed. The results reveal that the bubbles will deform and break up to form film droplet after the hollow droplets impact the wall of the oil film. The change of pressure and velocity gradient inside and outside the bubble is the main cause of bubble rupture. The bubble size has a great influence on the bubble rupture mode, single-point rupture occurs when the bubble is small, larger bubbles are more likely to cause multiple ruptures. The difference of force between different sizes of bubbles is larger, and there is no obvious correlation between the size of the bubble and the moment of rupture. The velocity of the collision and the viscosity of the liquid have a certain influence on the deformation, rupture and rupture time of the bubble. The larger the collision velocity, the greater the kinetic energy of the oils droplet, and the more likely the bubble deformation and rupture. When the viscosity of the liquid increases, the bubble deformation is promoted at the early stage of the movement of the oil droplet, and the rupture behavior of the bubble can be delayed in the later period of the movement.
  • [1] 王建文,安琦. 油气润滑输送中两相流的形成. 华东理工大学学报:自然科学版, 2009, 35(2): 324-327
    [1] (Wang Jianwen, An Qi.Investigation of two-phase flow regimes in transport pipe in oil-air lubrication system. Journal of East China University of Science and Technology ( Natural Science Edition), 2009, 35(2): 324-327 (in Chinese))
    [2] Roisman IV, Tropea C.Impact of a drop onto a wetted wall: Description of crown formation and Propagation. Journal of Fluid Mechanics, 2002, 472(472): 373-397
    [3] Okawa T, Shiraishi T, Mori T.Production of secondary drops during the single water drop impact onto a plane water surface. Experiments in Fluids, 2006, 41(6): 965-974
    [4] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609
    [4] (Guo Jiahong, Dai Shiqiang, Dai Qin.Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609 (in Chinese))
    [5] 宋云超, 宁智, 孙春华等. 液滴撞击湿润壁面的运动形态及飞溅运动机制.力学学报, 2013, 45(6): 833-842
    [5] (Song Yunchao, Ning Zhi, Sun Chunhua, et al.Movement and splashing of a droplet impacting on a wet wall. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 833-842 (in Chinese))
    [6] Guo YL, Wei L, Liang GT, et al.Simulation of droplet impact on liquid film with CLSVOF. International Communications in Heat and Mass Transfer, 2014, 53(53): 26-33
    [7] 柴敏, 陈松, 邵长孝等. 单液滴撞击液膜的颈部射流模拟及机理分析. 工程热物理学报, 2016, 37(8): 1669-1675
    [7] (Chai Min, Chen Song, Shao Changxiao, et al.DNS analysis of neck jetting flow dynamics after single drop impacting onto a preexisting liquid film. Journal of Engineering Thermophysics, 2016, 37(8): 1669-1675 (in Chinese))
    [8] 黄虎, 洪宁, 梁宏等. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 244-255
    [8] (Huang Hu, Hong Ning, Liang Hong, et al.Lattice Boltzmann simulation of the droplet impact onto liquid film. Acta Physica Sinica, 2016, 65(8): 244-255 (in Chinese))
    [9] Cherepanov AN, Solonenko OP, Bublik VV.Numerical and analytic investigation of the dynamics of hollow droplet impact onto substrate. Thermophysics & Aeromechanics, 2008, 15(4): 631-641
    [10] Gulyaev IP, Solonenko OP, Gulyaev PY, et al.Hydrodynamic features of the impact of a hollow spherical drop on a flat surface. Technical Physics Letters, 2009, 35(10): 885-888
    [11] Gulyaev IP, Solonenko OP.Hollow droplets impacting onto a solid surface. Experiments in Fluids, 2013, 54(1): 1432-1443
    [12] Kumar A, Gu S, Kamnis S.Simulation of impact of a hollow droplet on a flat surface. Applied Physics A, 2012, 109(1): 101-109
    [13] Safaei H, Emami MD, Jazi HS, et al.Application of compressible volume of fluid model in simulating the impact and solidification of hollow spherical ZrO2Droplet on a Surface.Journal of Thermal Spray Technology, 2017(5-6): 1-23
    [14] Sussman M, Puckett EG.A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 2000, 162(2): 301-307
    [15] Ray B, Biswas G, Sharma A.Generation of secondary droplets in coalescence of a drop at a liquidâ liquid interface. Journal of Fluid Mechanics, 2010, 655(655): 72-104
    [16] Bahni R, Gautam B, Ashutosh S.Regimes during liquid drop impact on a liquid pool. Journal of Fluid Mechanics, 2015, 768: 492-523
    [17] 王茜茜. 基于CLSVOF模型的气泡动力学特性研究. [硕士论文]. 长沙:中南大学, 2014
    [17] (Wang Qianqian.Study of bubble dynamic characteristics based on CLSVOF model. [Master Thesis]. Changsha: Central South University, 2014 (in Chinese))
    [18] Wang Z, Li Y, Huang B, et al.Numerical investigation on the influence of surface tension and viscous force on the bubble dynamics with a CLSVOF method. Journal of Mechanical Science & Technology, 2016, 30(6): 2547-2556
    [19] Ohta M, Kikuchi D, Yoshida Y, et al.Robust numerical analysis of the dynamic bubble formation process in a viscous liquid. International Journal of Multiphase Flow, 2011, 37(9): 1059-1071
    [20] Fan W, Qi T, Sun Y, et al.Coalescence deformation of bubble pairs generated from twin nozzles in CMC solutions. Chemical Engineering & Technology, 2016, 39(10): 1895-1902
    [21] Brackbill JU, Kothe DB, Zemach C.A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335-354
    [22] 吕明, 宁智, 孙春华. 单液滴内空化气泡的生长及溃灭研究. 力学学报, 2016, 48(4): 857-866
    [22] (Lü Ming, Ning Zhi, Sun Chunhua.Study on the growth and collapse of cavitation bubble within a droplet. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 857-866 (in Chinese))
    [23] Ni BY, Zhang AM, Wu GX.Simulation of a fully submerged bubble bursting through a free surface. European Journal of Mechanics-B/Fluids, 2016, 55(4): 1-14
    [24] 马超, 薄涵亮. 气泡破裂产生膜液滴理论模型的建立与验证. 原子能科学技术, 2015, 49(11): 2036-2043
    [24] (Ma Chao, Bo Hanliang.Establishment and verification of theoretical model of film drops produced by bubble bursting. Atomic Energy Science and Technology, 2015, 49(11): 2036-2043 (in Chinese))
    [25] Knelman F, Dombrowski N, Newitt DM.Mechanism of the bursting of bubbles. Nature, 1954, 173(4397): 261-261
    [26] Spiel DE.A hypothesis concerning the peak in film drop production as a function of bubble size. Journal of Geophysical Research Oceans, 1997, 102(C1): 1153-1161
    [27] Feonychev AI.Stability of thermocapillary convection and regimes of a fluid flow acted upon by a standing surface wave. Journal of Engineering Physics & Thermophysics, 2007, 80(5): 961-969
    [28] Shinjo J, Umemura A.Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 2010, 36(7): 513-532
    [29] Canedo EL, Favelukis M, Tadmor Z, et al.An experimental study of bubble deformation in viscous liquids in simple shear flow. Aiche Journal, 1993, 39(4): 553-559
  • 期刊类型引用(9)

    1. 王飞,杨泽,陈进,苏志坚. 颗粒击穿气泡时气泡的变形和破裂. 东北大学学报(自然科学版). 2024(06): 808-815+836 . 百度学术
    2. 陈苗苗,王兆长,郑楠,张国涛,涂德浴,童宝宏. 微量润滑油滴冲击倾斜壁面黏附颗粒的实验研究. 力学学报. 2024(10): 2854-2864 . 本站查看
    3. 吴飞鹏,李娜,杨维,陈佳豪,丁步杰,夏雷,刘静,王聪,汪庐山. 水力脉动波驱动微观剩余油实验与机理分析. 石油勘探与开发. 2022(06): 1217-1226 . 百度学术
    4. WU Feipeng,LI Na,YANG Wei,CHEN Jiahao,DING Bujie,XIA Lei,LIU Jing,WANG Cong,WANG Lushan. Experimental characterization and mechanism of hydraulic pulsation waves driving microscopic residual oil. Petroleum Exploration and Development. 2022(06): 1411-1422 . 必应学术
    5. 涂德浴,潘庆民,童宝宏. 椭球液滴撞击超疏水表面反弹过程数值分析. 计算力学学报. 2021(02): 215-221 . 百度学术
    6. 毛庆凯,牛贵锋,王良杰,杨万有,张凤辉,罗昌华,马喜超. 中渗砂岩油藏脉动注水驱油机理研究. 当代化工. 2021(06): 1419-1424 . 百度学术
    7. 强伟,侯予,薛绒,张海洋,宋远佳,刘秀芳. 氮液滴碰撞不同浸润性壁面特性研究. 西安交通大学学报. 2021(07): 151-157 . 百度学术
    8. 童宝宏,苏家磊,张国涛,郑楠,郭丹,王伟,刘焜. 气流对含气泡油滴撞壁铺展流动过程的影响. 机械工程学报. 2020(17): 216-224 . 百度学术
    9. 张洋,陈科,尤云祥,盛立. 浮力气泡对水平壁面的回弹动力学特性. 力学学报. 2019(05): 1285-1295 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  1503
  • HTML全文浏览量:  235
  • PDF下载量:  353
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-12-05
  • 刊出日期:  2018-03-17

目录

    /

    返回文章
    返回