1 | Callisto L, Rampello S.Shear strength and small-strain stiffness of a natural clay under general stress conditions. Geotechnique, 2002, 52(8):547-560. | 2 | 于亚磊, 叶冠林, 熊永林. 上海第4层黏土力学特性的弹塑性本构模拟. 岩土力学,2016,9:2541-2546 | 2 | Yu Yalei, Ye Guanlin, Xiong Yonglin.Elasto-plastic constitutive modelling for mechanical behavior of Shanghai 4th layer clay. Rock and Soil Mechanics, 2016,9: 2541-2546(in Chiniese) | 3 | Liu WZ, Shi ML, Miao LC, et al.Constitutive modeling of the destructuration and anisotropy of natural soft clay. Computers and Geotechnics, 2013, 51:24-41. | 4 | Panayides S, Rouainia M, Woodd M.Influence of degradation of structure on the behaviour of a full-scale embankment. Canadian Geotechnical Journal, 2012, 49(3):344-356. | 5 | Rocchi G, Vaciago G, Fontana M, et al.Understanding sampling disturbance and behaviour of structured clays through constitutive modelling. Soils and Foundations, 2013, 53(2):315-334. | 6 | Taiebat M, Dafalias YF, Peek R.A destructuration theory and its application to SANICLAY model. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(10):1009-1040. | 7 | Suebsuk J, Horpibulsuk S, Liu MD.Modified Structured Cam Clay: A generalised critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 2010, 37:956-968. | 8 | Cotecchia F, Chandler RJ.A general framework for the mechanical behaviour of clays. Geotechnique, 2000, 50(4):431-447. | 9 | Callisto L, Gajo A, Wood DM.Simulation of triaxial and true triaxial tests on natural and reconstituted Pisa clay. Geotechnique, 2002, 52(9):649-666. | 10 | 10祝恩阳, 姚仰平. 结构性土UH模型. 岩土力学,2015, 11:3101-3110 | 10 | Zhu Enyang, Yao Yangping, A UH constitutive model for structured soils. Rock and Soil Mechanics, 2015,11: 3101-3110(in Chiniese) | 11 | Lloret CM, Sloan SW, Sheng DC, et al.Error behaviour in explicit integration algorithms with automatic substepping. International Journal for Numerical Methods in Engineering, 2016,108(9):1030-1053. | 12 | Bicanic N, Pearce CJ.Computational aspects of a softening plasticity model for plain concrete. Mechanics of Cohesive-frictional Materials, 1996, 1(1):75-94. | 13 | Stupkiewicz S, Denzer R, Piccolroaz A, et al.Implicit yield function formulation for granular and rock-like materials. Computational Mechanics, 2014, 54(5):1163-1173. | 14 | Valentini B, Hofstetter G.Review and enhancement of 3D concrete models for large-scale numerical simulations of concrete structures. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(3):221-246. | 15 | Jiu JL.Integration algorithm for a modified Yoshida-Uemori odel to simulate cyclic plasticity in extremely large plastic strain ranges up to fracture. Computers and Structures, 2014, 145:36-46. | 16 | Majid MT, Karma Y.On implementation and performance of an anisotropic constitutive model for clays. International Journal of Computational Methods, 2014, 11(2):1-31. | 17 | Penasa M, Piccolroaz A, Argani L, et al.Integration algorithms of elastoplasticity for ceramic powder compaction. Journal of the European Ceramic Society, 2014, 34(11):2775-2788. | 18 | Crouch SC, Tahar B.Application of a stress return algorithm for elasto-plastic hardening-softening models with high yield surface curvature. In: Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona, 11-14, September 2000. | 19 | Wang W, Datcheva M, Schanz T, et al.A sub-stepping approach for elasto-plasticity with rotational hardening. Computational Mechanics, 2006, 37(3):266-278. | 20 | Hernandez JA, Oliver J, Cante JC, et al.A robust approach to model densification and crack formation in powder compaction processes. International Journal for Numerical Methods in Engineering, 2011, 87(8):735-767. | 21 | Brannon RM, Leelavanichkul S.A multi-stage return algorithm for solving the classical damage component of constitutive models for rocks, ceramics, and other rock-like media. International Journal of Fracture, 2010, 163:133-149. | 22 | Homel MA, Brannon RM.Relaxing the multi-stage nested return algorithm for curved yield surfaces and nonlinear hardening laws. International Journal of Fracture, 2015, 194(1):1-7. | 23 | Homel MA, Guilkey JE, Brannon RM.Numerical solution for plasticity models using consistency bisection and a transformed-space closest-point return: a nongradient solution method. Computational Mechanics, 2015, 56(4):565-584. | 24 | Bilotta A, Leonetti L, Garcea G.An algorithm for incremental elastoplastic analysis using equality constrained sequential quadratic programming. Computers and Structures, 2012, 102:97-107. | 25 | Contrafatto L, Cuomo A.A globally convergent numerical algorithm for damaging elasto-plasticity based on the Multiplier method. International Journal for Numerical Methods in Engineering, 2005, 63(8):1089-1125. | 26 | Perez FA, Armero F.On the formulation of closest-point projection algorithms in elastoplasticity-part II: Globally convergent schemes. International Journal for Numerical Methods in Engineering, 2002, 53(2):331-374. | 27 | Dafalias YF, Manzari MT, Akaishi M.A simple anisotropic clay plasticity model. Mechanics Research Communications, 2002, 29(4):241-245. | 28 | Ortiz M, Popov EP.Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering, 1985, 21(9):1561-1576. | 29 | Ortiz M, Simo JC.An analysis of a new class of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering, 1986, 23(3):353-366. | 30 | Abbasbandy S, Tan Y, Liao SJ.Newton-homotopy analysis method for nonlinear equations. Applied Mathematics and Computation, 2007, 188(2):1794-1800. | 31 | 石玉仁, 许新建, 吴枝喜, 等. 同伦分析法在求解非线性演化方程中的应用. 物理学报,2006,55(4):1555-1560 | 32 | Shi Yuren, Xu Xinjian, Wu Zhixi, et al.Application of the homotopy analysis method to solving nonlinear evolution equations. ACTA PHYSICA SINICA 2006,55(4):1555-1560(in Chiniese) | 32 | Wu Y, Cheung KF.Two-parameter homotopy method for nonlinear equations. Numerical Algorithms, 2010, 53(4):555-572. | 33 | Wu TM.Solving the nonlinear equations by the Newton-homotopy continuation method with adjustable auxiliary homotopy function. Applied Mathematics and Computation, 2006, 173(1):383-388. |
|