EI、Scopus 收录
中文核心期刊

采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度

张财贵, 曹富, 李炼, 周妍, 黄润秋, 王启智

张财贵, 曹富, 李炼, 周妍, 黄润秋, 王启智. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度[J]. 力学学报, 2016, 48(3): 624-635. DOI: 10.6052/0459-1879-15-349
引用本文: 张财贵, 曹富, 李炼, 周妍, 黄润秋, 王启智. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度[J]. 力学学报, 2016, 48(3): 624-635. DOI: 10.6052/0459-1879-15-349
Zhang Caigui, Cao Fu, Li Lian, Zhou Yan, Huang Runqiu, Wang Qizhi. DETERMINATION OF DYNAMIC FRACTURE INITIATION, PROPAGATION, AND ARREST TOUGHNESS OF ROCK USING SCDC SPECIMEN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624-635. DOI: 10.6052/0459-1879-15-349
Citation: Zhang Caigui, Cao Fu, Li Lian, Zhou Yan, Huang Runqiu, Wang Qizhi. DETERMINATION OF DYNAMIC FRACTURE INITIATION, PROPAGATION, AND ARREST TOUGHNESS OF ROCK USING SCDC SPECIMEN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624-635. DOI: 10.6052/0459-1879-15-349
张财贵, 曹富, 李炼, 周妍, 黄润秋, 王启智. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度[J]. 力学学报, 2016, 48(3): 624-635. CSTR: 32045.14.0459-1879-15-349
引用本文: 张财贵, 曹富, 李炼, 周妍, 黄润秋, 王启智. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度[J]. 力学学报, 2016, 48(3): 624-635. CSTR: 32045.14.0459-1879-15-349
Zhang Caigui, Cao Fu, Li Lian, Zhou Yan, Huang Runqiu, Wang Qizhi. DETERMINATION OF DYNAMIC FRACTURE INITIATION, PROPAGATION, AND ARREST TOUGHNESS OF ROCK USING SCDC SPECIMEN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624-635. CSTR: 32045.14.0459-1879-15-349
Citation: Zhang Caigui, Cao Fu, Li Lian, Zhou Yan, Huang Runqiu, Wang Qizhi. DETERMINATION OF DYNAMIC FRACTURE INITIATION, PROPAGATION, AND ARREST TOUGHNESS OF ROCK USING SCDC SPECIMEN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624-635. CSTR: 32045.14.0459-1879-15-349

采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度

基金项目: 高等学校博士学科点专项科研基金(201301181130013)和地质灾害防治与地质环境保护国家重点实验室开放基金(SKLG2016K015)资助项目.
详细信息
    通讯作者:

    王启智,教授,主要研究方向:岩石和混凝土等材料和结构的动态断裂.E-mail:qzwang2004@163.com

  • 中图分类号: O346;O347.3

DETERMINATION OF DYNAMIC FRACTURE INITIATION, PROPAGATION, AND ARREST TOUGHNESS OF ROCK USING SCDC SPECIMEN

  • 摘要: 爆炸、冲击、地震等人为或自然灾害不可避免,经常造成大量土木工程设施的破坏,因此岩石在动态载荷作用下的行为受到特别关注.岩石动态断裂韧度是评价岩石抵抗裂纹动态起裂、扩展和止裂性能的材料参数,开展岩石动态断裂韧度测试方法的研究对相关理论基础和实验技术的要求较高.岩石动态断裂韧度分为动态起裂、动态扩展、动态止裂三种,虽然关于动态起裂和动态扩展的研究已有一些成果,对岩石动态止裂的研究仍是一个难题,至今几乎无人问津.研究表明,在分离式霍普金森压杆撞击压缩单裂纹圆孔板岩石试样的I型动态断裂试验中,动态起裂、扩展、止裂的全过程可以由黏贴在压缩单裂纹圆孔板试样上的裂纹扩展计监测,岩石的动态起裂、扩展、止裂韧度可以用实验-数值-解析法确定.特别值得一提的是首次测出了岩石的动态止裂韧度.裂纹扩展计信号还显示,压缩单裂纹圆孔板在止裂后,停止的裂纹还会再次动态起裂、扩展并超出裂纹扩展计的检测范围.从能量的角度分析了动态止裂的过程,指出测试动态止裂韧度时要注意的一些问题.结果显示,岩石动态起裂韧度和动态扩展韧度分别随动态加载率和裂纹扩展速度的增大而增大,岩石动态起裂韧度略大于动态止裂韧度.
    Abstract: Inevitable man-made or natural disasters, such as explosion, impact, earthquake, etc, often cause the failure of a large number of civil engineering facilities, and hence rock behavior under dynamic loading has become the focus of special attention. Dynamic fracture toughness of rock is the material parameter for characterizing its resistance to dynamic crack initiation, propagation and arrest. Rock dynamic fracture toughness is then classified into three kinds: dynamic initiation, dynamic propagation and dynamic arrest. Although there were some achievements for studying rock dynamic initiation and propagation, the study on rock dynamic arrest, being a puzzling problem, has been so far almost ignored. In the present research, the single cleavage drilled compression (SCDC) specimen of rock was impacted by split Hopkinson pressure bar in the model-I dynamic fracture test, where a crack propagation gauge (CPG) was glued on the SCDC specimen to monitor the whole fracture process, including dynamic initiation, propagation, and arrest. An experimental-numerical-analytical approach was adopted to determine the dynamic initiation, propagation, and arrest toughness of rock material. The CPG signal indicated that after the arrest of the crack in the SCDC, the stopped crack will be reinitiated, and propagated out of the CPG monitoring range. This dynamic arrest process is analyzed from an energy perspective, and some required attentions in determining the dynamic arrest toughness are pointed out. The results show that the rock dynamic initiation toughness and propagation toughness increase with the increasing dynamic loading rate and crack propagation velocity, respectively, and the dynamic initiation toughness is larger than the arrest toughness.
  • 1 Bazant ZP, Caner FC. Impact comminution of solids due to local kinetic energy of high shear strain rate: I. Continuum theory and turbulence analogy. Journal of the Mechanics and Physics of Solids,2014, 64: 223-235
    2 李海涛,罗伟,姜雨省等. 复合射孔爆燃气体压裂裂缝起裂扩展研究. 爆炸与冲击,2014, 34(3):307-314 (Li Haitao, Luo Wei, Jiang Yusheng, et al. Initiation and extension of gas-driven fracture during compound perforation. Explosion and Shock Waves, 2014,34(3): 307-314 (in Chinese))
    3 Freund LB. Dynamic Fracture Mechanics. Cambridge: Cambridge University Press, 1990
    4 范天佑. 断裂动力学原理与应用. 北京:北京理工大学出版社,2006: 38-43,108-130 (Fan Tianyou. Principle and Application of Fracture Dynamics. Beijing: Beijing Institute of Technology Press,2006: 38-43,108-130 (in Chinese))
    5 Zhang QB, Zhao J. A review of dynamic experimental techniques and mechanical behavior of rock materials. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411-1478
    6 Kang YS, Liu QS, Liu XY, et al. Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6: 466-476
    7 Zhang QB, Zhao J. Effect of loading rate on fracture toughness and failure micro-mechanisms in marble. Engineering Fracture Mechanics,2013, 102: 288-309
    8 Wang QZ, Yang JR, Zhang CG, et al. Sequential determination of dynamic initiation and propagation toughness of rock using experimental-numerical-analytical method. Engineering Fracture Mechanics, 2015, 141:78-94
    9 Gao G, Huang S, Xia K, et al. Application of digital image correlation (dic) in dynamic notched semi-circular bend (NSCB) tests. Experimental Mechanics, 2015, DOI: 10.1007/s11340-014-9863-5
    10 张财贵, 周妍, 杨井瑞等. 用边裂纹平台圆环试样测试岩石的I 型动态断裂韧度. 水利学报, 2014, 45(6): 691-700 (Zhang Caigui, Zhou Yan, Yang Jingrui, et al. Determination of model I dynamic fracture toughness of rock using edge cracked flattened ring specimen. Shui Li Xue Bao, 2014, 45(6): 691-700 (in Chinese))
    11 张财贵, 周妍, 杨井瑞等. 测试断裂韧度的一类边裂纹平台圆环 (盘) 试样:数值分析和标定结果. 岩石力学与工程学报, 2014,33(8): 1546-1555 (Zhang Caigui, Zhou Yan, Yang Jingrui, et al. A series of edge cracked flattened ring (disc) specimens for determining fracture toughness: numerical analysis and calibration results. Chinese Journal of Rock Mechanics and Engineering. 2014, 33(8):1546-1555 (in Chinese))
    12 Ravi-Chandar K. Dynamic Fracture. Elsevier, 2004: 49-69, 168-175
    13 ASTM E-l221. Standard test method for determining plane-strain crack arrest fracture toughness, KIa, of ferritic steels. In: Annual Book of ASTM Standards, 1988
    14 Freund LB. Crack propagation in an elastic solid subjected to general loading, I. Rate of extension. Journal of the Mechanics and Physics of Solids, 1972, 20: 129-140
    15 Kalthoff JF. On the measurement of dynamic fracture toughness-a review of recent work. International Journal of Fracture, 1985, 27:277-298
    16 Iung T,Pineau A. Dynamic crack propagation and crack arrest investigated with a new specimen geometry,Part II:Experimental study on a low-alloy ferritic steel. Fatigue and Fracture Engineering Materials and Structures, 1996, 19(11): 1369-1381
    17 倪敏,苟小平,王启智. 压缩双裂纹和单裂纹圆孔板应力强度因子公式. 力学学报, 2013, 45(1): 94-102 (Ni Min, Gou Xiaoping, Wang Qizhi. stress intensity factor formulas for DCDC and SCDC specimens. Chinese Journal of Theoretical and Applied Mechanics,2013, 45(1): 94-102 (in Chinese))
    18 Janssen C. Specimen for fracture mechanics studies on glass. In: Proceedings of the 10th International Conference on Glass, Kyoto, Japan, Ceramic Society of Japan, 1974. 10.23-10.30
    19 Nielsen C, Amirkhizi V, Nemat-Nasser S. The effect of geometry on fracture strength measurement using DCDC samples. Engineering Fracture Mechanics, 2012, 91: 1-13
    20 Nielsen C, Amirkhizi V, Nemat-Nasser S. An empirical model for estimating fracture toughness using the DCDC geometry. International Journal of Fracture, 2014, 188(1): 113-118
    21 倪敏, 苟小平, 王启智. 霍普金森杆冲击压缩单裂纹圆孔板的岩石动态断裂韧度试验方法. 工程力学, 2013, 30(1): 365-372 (Ni Min, Gou Xiaoping, Wang Qizhi. Test method for rock dynamic fracture toughness using single cleavage drilled compression specimen impacted by split Hopkinson pressure bar. Engineering Mechanics,2013, 30(1): 365-372 (in Chinese))
    22 杨井瑞,张财瑞,周妍等. 用SCDC 试样测试岩石动态断裂韧度的新方法. 岩石力学与工程学报, 2015, 34(2): 279-292 (Yang Jingrui, Zhang Cairui, Zhou Yan, et al. A new method for determining dynamic fracture toughness of rock using SCDC specimens. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):279-292 (in Chinese))
    23 Zhou YX, Xia K, Li XB, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. International Journal of Rock Mechanics and Mining Sciences, 2012, 49: 105-112
    24 Ravi-Chandar K, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson press bar. American Ceramic Society, 1994, 77(1): 263-267
    25 Jankowiak T, Rusinek A. Validation of the Klepaczko-Malinowski model of friction correction and recommendations on split Hopkinson pressure bar. Finite Elements in Analysis and Design, 2011,47(10): 1191-1208
    26 Chen LS, Kuang JH. A modified linear extrapolation formula for determination of stress intensity factors. International Journal of Fracture, 1992, 54(1): R3-R8
    27 Irwin GR, Wells AA. A continuum mechanics view of crack propagation. Metallurgical Reviews, 1965, 91: 223-270
    28 Bhat HS, Rosakis AJ, Sammis CG. A micromechanics based constitutive model for brittle failure at high strain rate. Journal of Applied Mechanics, 2012, 79: 031016-1-12
    29 Markus JB, Gao HJ. Dynamic fracture instabilities due to local hyper-elasticity at crack tips. Nature, 2006, 439(19): 307-310
    30 Broke D. Elementary Engineering Fracture Mechanics. Martinus Nijhoff Publishers, 1982
  • 期刊类型引用(19)

    1. 经来旺,肖起辉,方旭,张世翔,经纬. 拉伸圆孔板孔边裂纹应力强度因子解析解. 科学技术与工程. 2023(09): 3618-3625 . 百度学术
    2. 彭绍驰,经来旺,吴迪,经纬. 受压圆孔板的闭合裂纹尖端应力强度因子解析解. 水资源与水工程学报. 2022(06): 159-166 . 百度学术
    3. 李欣,张振南. 卸荷条件下岩石Ⅰ型动态应力强度因子变化规律. 安徽工业大学学报(自然科学版). 2021(04): 422-430 . 百度学术
    4. 肖定军,朱哲明,蒲传金,陆路,胡荣. 爆炸荷载下青砂岩动态起裂韧度的测试方法. 爆炸与冲击. 2020(02): 78-91 . 百度学术
    5. 竹宇波. 基于围道积分及网格重剖分下的SCB裂纹扩展数值模拟研究. 有色金属工程. 2020(09): 104-112 . 百度学术
    6. 郎林,朱哲明,邓帅,牛草原,万端莹,王磊. 基于圆弧底试件的动态裂纹扩展及止裂规律研究. 爆炸与冲击. 2020(09): 42-53 . 百度学术
    7. 赵毅鑫,孙荘,宋红华,赵士琦. 煤Ⅰ型动态断裂裂纹扩展规律试验与数值模拟研究. 煤炭学报. 2020(12): 3961-3972 . 百度学术
    8. 韩强,屈展,叶正寅,董广建. 基于微米力学实验的页岩Ⅰ型断裂韧度表征. 力学学报. 2019(04): 1245-1254 . 本站查看
    9. 周磊,朱哲明,董玉清,应鹏. 冲击加载下巷道内裂纹的扩展特性及破坏行为. 爆炸与冲击. 2018(04): 785-794 . 百度学术
    10. 刘瑞峰,朱哲明,李盟,刘邦. 爆炸载荷下Ⅰ型裂纹的起裂及扩展规律研究. 岩石力学与工程学报. 2018(02): 392-402 . 百度学术
    11. 鲁义强,张盛,高明忠,尹贤刚,李圣伟,李聪,何志强. 多次应力波作用下P-CCNBD岩样动态断裂的能量耗散特性研究. 岩石力学与工程学报. 2018(05): 1106-1114 . 百度学术
    12. 李盟,朱哲明,刘瑞峰,刘邦. 孔洞对爆生裂纹动态扩展行为影响研究. 岩土工程学报. 2018(12): 2191-2199 . 百度学术
    13. 肖福坤,王厚然,张睿,成乾龙. 不同冲击加载作用下砂岩的破碎特征. 黑龙江科技大学学报. 2018(06): 603-607 . 百度学术
    14. 董玉清,朱哲明,王蒙,周磊,应鹏. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为. 中南大学学报(自然科学版). 2018(11): 2821-2830 . 百度学术
    15. Liuke Huang,Jianjun Liu,Youjun Ji,Xiaoping Gong,Liangkai Qin. A review of multiscale expansion of low permeability reservoir cracks. Petroleum. 2018(02): 115-125 . 必应学术
    16. 古斌,郭宇立,李群. 基于构型力断裂准则的裂纹与夹杂干涉问题. 力学学报. 2017(06): 1312-1321 . 本站查看
    17. 张盛,鲁义强,王启智. 用P-CCNBD试样测定岩石动态扩展韧度和观察动态止裂现象. 岩土力学. 2017(11): 3095-3105 . 百度学术
    18. 岳中文,胡庆文,陈彪. 爆生裂纹与层理缺陷相互作用的实验研究. 振动与冲击. 2017(12): 99-104 . 百度学术
    19. 李炼,杨丽萍,曹富,王启智. 冲击加载下的砂岩动态断裂全过程的实验和分析. 煤炭学报. 2016(08): 1912-1922 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  958
  • HTML全文浏览量:  101
  • PDF下载量:  932
  • 被引次数: 32
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2016-01-27
  • 刊出日期:  2016-05-17

目录

    /

    返回文章
    返回