EI、Scopus 收录
中文核心期刊

多工况线性结构稳健拓扑优化设计

付志方, 赵军鹏, 王春洁

付志方, 赵军鹏, 王春洁. 多工况线性结构稳健拓扑优化设计[J]. 力学学报, 2015, 47(4): 642-650. DOI: 10.6052/0459-1879-15-072
引用本文: 付志方, 赵军鹏, 王春洁. 多工况线性结构稳健拓扑优化设计[J]. 力学学报, 2015, 47(4): 642-650. DOI: 10.6052/0459-1879-15-072
Fu Zhifang, Zhao Junpeng, Wang Chunjie. ROBUST TOPOLOGY OPTIMIZATION DESIGN OF STRUCTURES WITH MULTIPLE-UNCERTAINTY LOAD CASES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 642-650. DOI: 10.6052/0459-1879-15-072
Citation: Fu Zhifang, Zhao Junpeng, Wang Chunjie. ROBUST TOPOLOGY OPTIMIZATION DESIGN OF STRUCTURES WITH MULTIPLE-UNCERTAINTY LOAD CASES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 642-650. DOI: 10.6052/0459-1879-15-072
付志方, 赵军鹏, 王春洁. 多工况线性结构稳健拓扑优化设计[J]. 力学学报, 2015, 47(4): 642-650. CSTR: 32045.14.0459-1879-15-072
引用本文: 付志方, 赵军鹏, 王春洁. 多工况线性结构稳健拓扑优化设计[J]. 力学学报, 2015, 47(4): 642-650. CSTR: 32045.14.0459-1879-15-072
Fu Zhifang, Zhao Junpeng, Wang Chunjie. ROBUST TOPOLOGY OPTIMIZATION DESIGN OF STRUCTURES WITH MULTIPLE-UNCERTAINTY LOAD CASES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 642-650. CSTR: 32045.14.0459-1879-15-072
Citation: Fu Zhifang, Zhao Junpeng, Wang Chunjie. ROBUST TOPOLOGY OPTIMIZATION DESIGN OF STRUCTURES WITH MULTIPLE-UNCERTAINTY LOAD CASES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 642-650. CSTR: 32045.14.0459-1879-15-072

多工况线性结构稳健拓扑优化设计

详细信息
    通讯作者:

    付志方, 在读博士, 主要研究方向:机械设计、拓扑优化. E-mail: zhifang_fu@buaa.edu.cn

  • 中图分类号: TH122;O327

ROBUST TOPOLOGY OPTIMIZATION DESIGN OF STRUCTURES WITH MULTIPLE-UNCERTAINTY LOAD CASES

  • 摘要: 针对实际工程中存在的多工况、载荷不确定的情况, 研究了概率方法表示载荷不确定性的多工况线性结构稳健拓扑优化设计方法. 基于线弹性位移叠加原理给出了多工况、不确定性条件下结构柔度均值与方差的计算方法, 并在此基础上推导了结构灵敏度公式. 对于承受M个工况的二维结构, 根据每个工况下的柔度均值和方差以及灵敏度信息求出其结构整体的均值、方差及灵敏度信息;而结构在单工况n个不确定载荷下的均值方差及灵敏度信息可以通过求解其在2n个确定性载荷工况下的位移求得. 提出了以结构整体柔度均值和标准差的加权和最小为目标、体积约束下的稳健拓扑优化设计方法. 数值算例验证了所提方法的正确性和有效性以及载荷不确定、多工况条件下优化设计结果的稳健性. 该设计方法可以很方便的推广到三维结构问题.
    Abstract: The uncertainties existed in practical applications have great effect on the performance of structures, so it is necessary to introduce uncertainty in structural conceptual design. Robust topology optimization under multiple load cases with uncertainty was studied, where the magnitude and direction of each load are treated as random variables and their probability density functions are given. The weighted sum of the mean and standard deviation of the structural compliance is minimized. According to the superposition principle of linear theory, computational method for expected and variance of structural compliance was proposed. Sensitivity analysis method was developed based on the expressions of the expected and variance of compliance. For 2D structure with M load cases, the expected compliance and variance of structures as well as sensitivity information can be obtained for each load case, and then the object function as well as sensitivity can be achieved readily. In each load case, the expected compliance and variance of structures as well as sensitivity information can be obtained by solving the equilibrium equation under 2n deterministic load cases, where n is the number of uncertain loads. Algorithm of structural robust topology optimization to minimize the weighted sum of expectation and standard deviation of compliance under the constraint on the material volume was proposed and verified by numerical examples. The numerical examples also demonstrated the robustness of topology optimization results under multiple load cases with uncertainties. The proposed algorithm can be readily generalized into 3D cases.
  • Eschenauer HA, Olhoff N. Topology optimization of continuum structures: a review. Applied Mechanics Reviews, 2001, 54 (4): 331-390
    亢战, 罗阳军. 桁架结构非概率可靠性拓扑优化. 计算力学学报, 2008, 25(5): 589-594 (Kang Zhan, Luo Yangjun. Topology opitimization of truss structures for non-probabilistic reliability. Chinese Journal of Computational Mechanics, 2008, 25(5): 589-594 (in Chinese))
    Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224
    Bendsoe M P, Sigmund O. Topology Optimization: Theory, Methods and Applications. New York: Springer-Verlag, 2004, 11-370
    Guo X, Cheng GD. Recent development in structural design and optimization. Acta Mechanica Sinica, 2010, 26(6): 807-823
    Zhou M, Rozvany GIN. The COC algorithm, part II: topological, geometry and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1): 197-224
    Bendsoe MP. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193-202
    Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Computers and Structures, 1993, 49(5): 885-896
    Guan H, Steven GP, Xie YM. Evolutionary structural optimization incorporating tension and compression materials. Advances in Structural Engineering, 1999, 2(4): 273-288
    Alfieri L, Bassi D, Biondini F, et al. Morphologic evolutionary structural optimization. In: Proc. 7th World Congress on Structural and Multidisciplinary Optimization, Paper A, 2007, 422
    Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246
    Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363-393
    Luo Z, Tong L, Kang Z. A level set method for structural shape and topology optimization using radial basis functions. Computers and Structures, 2009, 87(7): 425-434
    Tootkaboni M, Asadpoure A, Guest JK. Topology optimization of continuum structures under uncertainty——a polynomial chaos approach. Computer Methods in Applied Mechanics and Engineering, 2012, 201: 263-275
    Guest JK, Igusa T. Structural optimization under uncertain loads and nodal Locations. Computer Methods in Applied Mechanics and Engineering, 2008, 198 (1): 116-124
    Dunning PD, Kim HA, Mullineux G. Introducing loading uncertainty in topology optimization. AIAA Journal, 2011, 49 (4): 760-768
    Carrasco M, Ivorra B, Ramos AM. A variance-expected compliance model for structural optimization. Journal of Optimization Theory and Applications, 2012, 152 (1): 136-151
    Guo X, Bai W, Zhang W, et al. Confidence structural robust design and optimization under stiffness and load uncertainties. Computer Methods in Applied Mechanics and Engineering, 2009, 198 (41): 3378-3399
    Chen S, Chen W, Lee S. Level set based robust shape and topology optimization under random field uncertainties. Structural Multidisciplinary Optimization, 2010, 41 (4): 507-524
    Chen S, Chen W. A new level-set based approach to shape and topology optimization under geometric uncertainty. Structural Multidisciplinary Optimization, 2011, 44 (1): 1-18
    Lazarov BS, Schevenels M, Sigmund O. Topology optimization with geometric uncertainties by perturbation techniques. International Journal for Numerical Methods in Engineering, 2012, 90 (11): 1321-1336
    Guo X, Zhang W, Zhang L. Robust structural topology optimization considering boundary uncertainties. Computer Methods in Applied Mechanics and Engineering, 2013, 253 (1):356-368
    Kharmanda G, Olhoff N, Mohamed A, et al. Reliability-based topology optimization. Structural and Multidisciplinary Optimization, 2004, 26(5): 295-307
    Calafiore GC, Dabbene F. Optimization under uncertainty with applications to design of truss structures. Structural and Multidisciplinary Optimization, 2008, 35(3): 189-200
    赵军鹏, 王春洁.载荷不确定条件下的结构拓扑优化算法.北京航空航天大学学报, 2014, 40(7): 959-964 (Zhao Junpeng, Wang Chunjie. Algorithm of structural topology opimization under loading uncertainty. Journal of Beihang University of Aeronautics and Astronautics, 2014, 40(7): 959-964 (in Chinese))
    Schuëller GI, Jensen HA. Computational methods in optimization considering uncertainties: An overview. Computer Methods in Applied Mechanics and Engineering, 2008, 198(1): 2-13
    Lee KH, Park GJ. Robust optimization considering tolerances of design variables. Computers & Structures, 2001, 79(1): 77-86
    Kang Z, Luo Y. Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Computer Methods in Applied Mechanics and Engineering, 2009,198 (41-44): 3228-3238
    Conti S, Held H, Pach M, et al. Shape optimization under uncertainty: A stochastic programming perspective. SIAM Journal on Optimization, 2009, 19(4): 1610-1632
    Zhao J, Wang C. Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices. Computer Methods in Applied Mechanics and Engineering, 2014, 273: 204-218
    Zhao J, Wang C. Robust topology optimization of structures under loading uncertainty. AIAA Journal, 2014, 52(2): 398-407
    Cai K, Qin QH, Luo Z, et al. Robust topology optimization of bi-modulus structures. Computer-Aided Design, 2013, 45(10): 1159-1169
    罗阳军, 亢战, 邓子辰. 多工况下结构稳健性拓扑优化设计. 力学学报, 2011, 43(1): 227-234 (Luo Yangjun, Kang Zhan, Deng Zichen. Robust topology optimization design of structures with multiple load cases. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 227-234 (in Chinese))
    范文杰, 范子杰, 桂良进等. 多工况下客车车架结构多刚度拓扑优化设计研究. 汽车工程, 2008, 30(6): 531-533 (Fan Wenjie, Fan Zijie, Gui Liangjin, et al. Multi-stiffness topology optimization of bus frame with multiple loading conditions. Automotive Engineering, 2008, 30(6): 531-533 (in Chinese))
    李刚, 宋三灵, 张凯. 重载操作机钳臂结构多工况拓扑优化设计. 计算力学学报, 2011, 28(4): 102-107 (Li Gang, Song Sanling, Zhang Kai. Topology optimization for the clamp arm structure of heavy-duty manipulator under multiple load cases. Chinese Journal of Computational Mechanical, 2011, 28(4): 102-107 (in Chinese))
    Svanberg K. The method of moving asymptotes——A method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373
    Sigmund O. Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 2007, 33(4-5): 401-424
计量
  • 文章访问数:  1357
  • HTML全文浏览量:  122
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-03
  • 修回日期:  2015-05-26
  • 刊出日期:  2015-07-17

目录

    /

    返回文章
    返回