EI、Scopus 收录
中文核心期刊

多胞牺牲层的抗爆炸分析

ANTI-BLAST ANALYSIS OF CELLULAR SACRIFICIAL CLADDING

  • 摘要: 运用一维冲击波模型和三维细观有限元模型分析了多胞牺牲层的抗爆炸行为. 基于刚性-塑性硬化(R-PH)的多胞材料模型,建立了一维冲击波模型,得到了多胞牺牲层中冲击波传播的控制方程. 揭示了冲击波在多胞牺牲层中的传播特性,并阐述了附加质量和爆炸载荷强度两个参数对牺牲层设计的重要影响. 比较了基于刚性-理想塑性-锁定(R-PP-L) 模型和基于刚性-塑性硬化(R-PH) 模型的多胞牺牲层的结构设计,指出了两种模型的适用范围. 通过基于三维Voronoi 技术的细观有限元方法验证了基于R-PH 模型的多胞牺牲层结构的设计准则.

     

    Abstract: The behavior of a cellular sacrificial cladding for blast attenuation was studied by using 1D shock models and 3D cell-based finite element models. Based on a rate-independent, rigid-plastic hardening (R-PH) idealization, a shock model was developed and an equation governing the shock wave propagation in the sacrificial cladding was obtained. The results reveal the shock wave propagation characteristics in the sacrificial cladding. Two parameters, the attached mass and the strength of blasting load, are very important for the cellular sacrificial cladding design. Comparison of the sacrificial cladding structure designs based on the rigid-perfectly plastic-locking (R-PP-L) model and the R-PH model was presented and the applicable conditions of the two shock models were given. Finally, a cell-based finite element model using 3D Voronoi technology was employed to verify the design criteria of the cellular sacrificial cladding structure based on the R-PH model.

     

/

返回文章
返回