EI、Scopus 收录
中文核心期刊

弹性动力学高阶核无关快速多极边界元法

荣俊杰, 校金友, 文立华

荣俊杰, 校金友, 文立华. 弹性动力学高阶核无关快速多极边界元法[J]. 力学学报, 2014, 46(5): 776-785. DOI: 10.6052/0459-1879-13-426
引用本文: 荣俊杰, 校金友, 文立华. 弹性动力学高阶核无关快速多极边界元法[J]. 力学学报, 2014, 46(5): 776-785. DOI: 10.6052/0459-1879-13-426
Rong Junjie, Xiao Jinyou, Wen Lihua. A HIGH ORDER KERNEL INDEPENDENT FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR ELASTODYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 776-785. DOI: 10.6052/0459-1879-13-426
Citation: Rong Junjie, Xiao Jinyou, Wen Lihua. A HIGH ORDER KERNEL INDEPENDENT FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR ELASTODYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 776-785. DOI: 10.6052/0459-1879-13-426
荣俊杰, 校金友, 文立华. 弹性动力学高阶核无关快速多极边界元法[J]. 力学学报, 2014, 46(5): 776-785. CSTR: 32045.14.0459-1879-13-426
引用本文: 荣俊杰, 校金友, 文立华. 弹性动力学高阶核无关快速多极边界元法[J]. 力学学报, 2014, 46(5): 776-785. CSTR: 32045.14.0459-1879-13-426
Rong Junjie, Xiao Jinyou, Wen Lihua. A HIGH ORDER KERNEL INDEPENDENT FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR ELASTODYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 776-785. CSTR: 32045.14.0459-1879-13-426
Citation: Rong Junjie, Xiao Jinyou, Wen Lihua. A HIGH ORDER KERNEL INDEPENDENT FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR ELASTODYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 776-785. CSTR: 32045.14.0459-1879-13-426

弹性动力学高阶核无关快速多极边界元法

基金项目: 国家自然科学基金(11074201,11102154)和教育部博士点基金(2010610212009,2011610211006)资助项目.
详细信息
    作者简介:

    文立华,教授,主要研究方向:计算力学、结构动力学.E-mail:lhwen@nwpu.edu.cn

  • 中图分类号: O326

A HIGH ORDER KERNEL INDEPENDENT FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR ELASTODYNAMICS

Funds: The project was supported by the Natural National Science Foundations of China (11074201, 11102154) and Funds for Doctor Station from the Chinese Ministry of Education (20106102120009, 20116102110006).
  • 摘要: 基于核无关的快速多极方法, 发展了一种弹性动力学问题的快速、高精度边界元分析方法. 采用基于二次曲面单元的Nyström 离散, 将边界积分方程转化为求和形式, 可以方便地进行加速计算;由于采用二次元, 边界元分析精度很高. 将一种新型快速多极方法用于Nyström 边界元法的加速计算, 该方法的数值实现简便、不依赖于积分方程基本解的表达式, 因此通用性很好;该方法还具有最优的计算量和存储量、精度高且可以控制. 结合Nyström 边界元系数矩阵和快速多极方法转换矩阵的特点, 提出一种大幅度降低边界元内存消耗的策略. 数值结果表明, 该方法无论在分析精度, 还是计算速度和内存消耗上, 都大大优于同类方法, 是一种快速、通用的工程弹性动力学问题大规模数值分析方法.
    Abstract: In this paper, a highly accurate kernel-independent fast multipole boundary element method (BEM) is developed for solving large-scale elastodynamic problems in the frequency domain. The curved quadratic elements are employed to achieve high accuracy in BEM analysis. By using the Nystr?m discretization, the boundary integral equation is transformed into a summation, and thus the fast BEM algorithms can be applied conveniently. A newly developed kernel-independent fast multipole method (KIFMM) is used for BEM acceleration. This method is of nearly optimal computational complexity; more importantly, the numerical implementation of the method does not rely on the expression of the fundamental solutions and the accuracy is controllable and can be higher with only slight increase of the computational cost. By taking advantage of the cheap matrix assembly of Nyström discretization, the memory cost of the KIFMM accelerated BEM can be further reduced by several times. The performance of the present method in terms of accuracy and computational cost are demonstrated by numerical examples with up to 2.3 million degrees of freedom and by comparisons with existing methods.
  • 姚振汉, 王海涛. 边界元法. 北京: 高等教育出版社, 2010 (Yao Zhenghan, Wang Haitao. Boundary Element Method. Beijing: Higher Education Press. 2010 (in Chinese))
    Benedetti I, Aliabadi MH, A fast hierarchical dual boundary element method for three-dimensional elastodynamic crack problems. International Journal for Numerical Methods in Engineering. 2010, 84: 1038-1067
    Chen YC, Hwu C. Boundary element method for vibration analysis of two dimensional anisotropic elastic solids containing holes, cracks or interfaces. Engineering Analysis with Boundary Elements. 2014, 40: 22-35
    Lei J, Felie GS, Zhang CZ. Determination of dynamic intensity factors and time-domain BEM for interfacial cracks in anisotropic piezoelectric materials. International Journal of Solid and Structures. 2013, 50(9): 1482-1493
    Otani Y, Takahashi T, Nishimura N. A fast boundary integral equation method for elastodynamics in time domain and its parallelisation. Boundary Element Analysis, Lecture Notes in Applied and Computational Mechanics . 2007, 29: 161-185
    Fata SN, Cuzina B. A linear sampling method for near field inverse problems in elastodynamics. Inverse Problems. 2004, 20: 713-736
    Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal of Computational Physics. 1987, 73: 325-348
    李善德, 黄其柏, 李天匀. 新的对角形式快速多极边界元法求解Helmholtz方程. 物理学报. 2012, 61(6): 064301-1-064301-8 (Li Shande, Huang Qibai, Li Tianyun. A new diagonal form fast multipole boundary element method for solving acoustic Helmholtz equation. Acta Physica Sinica. 2012, 61(6): 064301-1-064301-8 (in Chinese))
    Phillips JR, White JK. A procorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 1997, 16(10) 1059-1072
    Bebendorf M. Hierarchical matrices: A means to efficiently solve elliptic boundary value problems Vol.63. In: Lecture Notes in Computational Science and Engineering (LNCSE). Springer-Verlag, 2008. ISBN 978-3-540-77146-3
    Xiao JY, Wen LH, Tausch J. On fast matrix-vector multiplication in wavelet Galerkin BEM. Engineering Analysis with Boundary Elements. 2009, 33(2): 159-167
    Chaillat S, Bonnet M, Semblat JF. A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain. Computer Methods in Applied Mechanics and Engineering. 2008, 197 4233-4249
    Chaillat S, Semblat JF, Bonnet M. A preconditioned 3-D multi-region fast multipole solver for seismic wave propagation in complex geometries. Communications in Computational Physics. 2012, 11(2): 594-609
    Milazzo A, Benedetti L, Aliabadi MH. Hierarchical fast BEM for anisotropic time-harmonic 3-D elastodynamics. Computers and Structures. 2012, 97: 9-24
    Yan ZY, Zhang J, Ye WJ. Rapid solution of 3-D oscillatory elastodynamics using the pFFT accelerated BEM. Engineering Analysis with Boundary Elements. 2010, 34(11): 956-962
    Xiao JY, Ye WJ, Cai YX, et al. Precorrected FFT accelerated BEM for large-scale transient elastodynamic analysis using frequency-domain approach. International Journal for Numerical Methods in Engineering. 2011, 90(1): 116-134
    Xiao JY, Ye WJ, Wen LH. Efficiency improvement of the frequency-domain BEM for rapid transient elastodynamic analysis. Computational Mechanics, 2013, 52(4): 903-912
    Ying LX, Biros G, Zorin D. Kernel-independent adaptive fast multipole algorithm in two and three dimensions. Journal of Computational Physics. 2004, 196: 591-626
    Fong W, Darve E. The black-box fast multipole method. Journal of Computational Physics. 2009, 228: 8712-8725.
    Engquist B, Ying LX. Fast directional multilevel algorithms for oscillatory kernels. SIAM Journal of Scientific Computation. 2007, 29(4): 1710-1737.
    Messner M, Schanz M, Darve E. Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation. Journal of Computational Physics. 2012, 231(4): 1175-1196
    Liu YJ, Li YX. Slow convergence of the BEM with constant elements in solving beam bending problems. Engineering Analysis with Boundary Elements. 2014, 39: 1-4
    Gao XW, Davies TG. Boundary Element Programming in Mechanics. Cambridge University Press (ISBN: 052177359-8), 2002
    Canino LF, Ottusch JJ, Stalzer MA, et al. Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization. Journal of Computational Physics. 1998, 146: 627-663
    Bremer J, Gimbutas Z. A Nyström method for weakly singular integral operators on surfaces. Journal of Computational Physics. 2012, 231: 4885-4903
    Mei ST, Chew WC. Nyström method for elastic wave scattering by three-dimensional obstacles. Journal of Computational Physics. 2007, 226: 1845-1858
    Mei ST, Chew WC. Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects. Journal of Computational Physics. 2009, 228: 921-932
    Rong JJ, Wen LH, Xiao JY. Efficiency improvement of the polar coordinate transformation for evaluating BEM singular integrals on curved elements. Engineering Analysis with Boundary Elements. 2014, 38: 83-93
    Gao XW. An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals. Computer Methods in Applied Mechanics and Engineering. 2010, 199: 2856-2864
    Xie GZ, Zhou FL, Zhang JM, et al. New variable transformations for evaluating nearly singular integrals in 3D boundary element method. Engineering Analysis with Boundary Elements. 2013, 37(9): 1169-1178
    张耀明, 谷岩, 陈正宗. 位势边界元法中的边界层效应与薄体结构. 力学学报. 2010, 42(2): 119-227 (Zhang Yaoming, Gu Yan, Chen Jeng-Tzong. Boundary layer effect and thin body structure in BEM for potential problems. Chinese Journal of Theoretical and Applied Mechanics. 2010, 42(2): 119-227 (in Chinese))
计量
  • 文章访问数:  1175
  • HTML全文浏览量:  99
  • PDF下载量:  1188
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-22
  • 修回日期:  2014-02-25
  • 刊出日期:  2014-09-17

目录

    /

    返回文章
    返回