EI、Scopus 收录
中文核心期刊

飞翼布局无人机流动分离控制及机理分析

许晓平, 周洲

许晓平, 周洲. 飞翼布局无人机流动分离控制及机理分析[J]. 力学学报, 2014, 46(4): 497-504. DOI: 10.6052/0459-1879-13-344
引用本文: 许晓平, 周洲. 飞翼布局无人机流动分离控制及机理分析[J]. 力学学报, 2014, 46(4): 497-504. DOI: 10.6052/0459-1879-13-344
Xu Xiaoping, Zhou Zhou. ACTIVE SEPARATION CONTROL FOR THE FLYING-WING UAV USING SYNTHETIC JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 497-504. DOI: 10.6052/0459-1879-13-344
Citation: Xu Xiaoping, Zhou Zhou. ACTIVE SEPARATION CONTROL FOR THE FLYING-WING UAV USING SYNTHETIC JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 497-504. DOI: 10.6052/0459-1879-13-344
许晓平, 周洲. 飞翼布局无人机流动分离控制及机理分析[J]. 力学学报, 2014, 46(4): 497-504. CSTR: 32045.14.0459-1879-13-344
引用本文: 许晓平, 周洲. 飞翼布局无人机流动分离控制及机理分析[J]. 力学学报, 2014, 46(4): 497-504. CSTR: 32045.14.0459-1879-13-344
Xu Xiaoping, Zhou Zhou. ACTIVE SEPARATION CONTROL FOR THE FLYING-WING UAV USING SYNTHETIC JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 497-504. CSTR: 32045.14.0459-1879-13-344
Citation: Xu Xiaoping, Zhou Zhou. ACTIVE SEPARATION CONTROL FOR THE FLYING-WING UAV USING SYNTHETIC JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 497-504. CSTR: 32045.14.0459-1879-13-344

飞翼布局无人机流动分离控制及机理分析

基金项目: 国家自然科学基金(11302178,11202162)、航空科学基金(2013ZA53002)和西北工业大学基础研究基金(JCT20130110)资助项目.
详细信息
    作者简介:

    许晓平,助理研究员,主要研究方向:飞行器设计、空气飞动力学、流动控制等.E-mail:xuran@nwpu.edu.cn

  • 中图分类号: V211

ACTIVE SEPARATION CONTROL FOR THE FLYING-WING UAV USING SYNTHETIC JET

Funds: The project was supported by the National Natural Science Foundation of China (11302178, 11202162), Aeronautical Science Foundation of China (2013ZA53002) and NPU Foundation for Fundamental Research (JCT20130110).
  • 摘要: 以小展弦比飞翼式无人机为对象,开展了基于零质量射流的主动流动控制数值模拟研究. 比较分析了应用零质量射流前后飞翼式无人机纵向气动特性的改善效果,并通过流场特征的分析探讨了流动控制技术产生气动增益的原因. 研究结果表明在模型中等迎角、大迎角范围,零质量射流技术可以显著增加升力系数,最大幅值达25%,并且拓宽了纵向力矩的线性范围. 机理分析表明,零质量射流扰动通过提高模型绕流场的边界层掺混,增强附面层内外的动量输运,使得附面层有足够的能量克服逆压梯度和黏性损耗,从而达到减缓流动分离甚至使分离流再附的目的.
    Abstract: The numerical simulation is conducted on the low-aspect-ratio flying-wing UAV model based on synthetic jet technology. Effectiveness of the synthetic jet active flow control technique for improving the longitudinal aerodynamic characteristics of model at low speed is explored and validated. The actuators produced significant shifts in the lift curve up to 25%. The flow characteristics analyses reveal that the disturbance caused by synthetic jet can transfer the higher moment flow to the boundary layer and reenergized the unstable boundary layer. The numerical results show that the synthetic jet technology can effectively improve flow separation at the middle and high angle of attack flight conditions.
  • Bolsunovsky AL, Buzoverya NP, Gurevich BI, et al. Flying wing-Problems and decisions. Aircraft Design, 2001, 4: 193-219
    Esteban S. Static and dynamic analysis of an unconventional plane-flying wing. AIAA Paper 2001-4010, 2001
    Dmitriev VG, Denisov VE, Gurevich BI, et al. The flying wing concept-chances and risks. AIAA Paper 2003-2887, 2003.
    牟斌. 流动控制数值模拟研究. [博士论文]. 绵阳:中国空气动力研究与发展中心研究生部, 2006 (Mu Bing. The numerical simulation research of flow control. [PhD Thesis]. Mian Yang: China Aerodynamics Research and Development Center, 2006 (in Chinese))
    罗振兵,夏智勋. 合成射流技术及其在流动控制中应用的进展. 力学进展, 2005, 35(2): 221-234 (Luo Zhengbing, Xia Zhixun. Advances in synthetic jet technology and application in flow control. Advances in Mechanics, 2005, 35(2):221-234 (in Chinese))
    张攀峰,王晋军,冯立好. 零质量射流技术及其应用研究进展. 中国科学 E 辑:技术科学, 2008, 38(3): 321-349 (Zhang Panfeng, Wang Jinjun, Feng Lihao. The application of synthetic jet technology. China Science E: Technology, 2008, 38(3): 321-349 (in Chinese))
    Bewley TR. Flow control-new challenges for a new renaissance. Process in Aerospace Science, 2001, 37(2001): 21-58
    程忠宇,吴学忠,李圣怡. 基于MEMS 的流动主动控制技术及其研究进展. 力学进展, 2005, 35(4): 577-584 (Cheng Zhongyu, Wu Xuezhong, Li Shengyi. Advances of active flow control based on MEMS technology. Advances in Mechanics, 2005, 35(4): 577-584 (in Chinese))
    Parekh DE, Williams SP, Amitay M, et al. Active flow control on the stingray UAV: Aerodynamic forces and moments. AIAA Paper 2003-4002, 2003
    Washburn AE, Amitay M. Active flow control on the stingray UAV: Physical mechanisms. AIAA Paper 2004-745, 2004
    孔轶男, 王立新, 王光学等. 小展弦比飞翼布局飞机横向涡流控制气动机理. 航空学报, 2009, 30(5): 806-811 (Kong Yinan, Wang Lixin, Wang Guangxue, et al. Lateral inject active flow control based on low aspect ratio flying wing. Acta Aeronoutica et Astronautica Sinica, 2009, 30(5): 806-811 (in Chinese))
    Margalit S, Greenblatt D, Seifert A, et al. Active flow control of a delta wing at high incidence using segmented piezoelectric actuators. AIAA Paper 2002-3270, 2002.
    Mahmood GM, Smith DR. Proportional aerodynamic control of a UAV wing model using synthetic jets. AIAA Paper 2007-3851, 2007
    许晓平. 飞翼式无人机主动流动控制技术研究. [博士论文].西安:西北工业大学, 2012 (Xu Xiaoping. Research on active flow control technology for the flying-wing UAV. [PhD Thesis]. Xi'an: Northwestern Polytechnical University, 2012 (in Chinese))
    Farnsworth JAN, Vaccaro JC, Amitay M. Aerodynamic performance modification of the stingray UAV at low agles of attack. AIAA Paper 2007-4426, 2007
    Mahmood GM, Smith DR. Proportional aerodynamic control of a UAV wing model using synthetic jets. AIAA Paper 2007-3851, 2007
    Seifert A, David S, Fono I, et al. Roll control via active flow control: from concept to flight. Journal of Aircraft, 2010, 47(3): 864-874
    许晓平,周洲. 基于AFC技术的飞翼无人机流动分离控制研究. 中国力学大会2013论文集. 西安:中国力学大会, 2013: 163 (Xu Xiaoping, Zhou Zhou. Active separation control for the flying-wing UAV. Xi'an: CCTAM2013, 2013: 163 (in Chinese))
计量
  • 文章访问数:  1692
  • HTML全文浏览量:  156
  • PDF下载量:  1083
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-14
  • 修回日期:  2014-01-07
  • 刊出日期:  2014-07-17

目录

    /

    返回文章
    返回