EI、Scopus 收录
中文核心期刊

岩土材料的非线性统一强度模型

杜修力, 马超, 路德春

杜修力, 马超, 路德春. 岩土材料的非线性统一强度模型[J]. 力学学报, 2014, 46(3): 389-397. DOI: 10.6052/0459-1879-13-312
引用本文: 杜修力, 马超, 路德春. 岩土材料的非线性统一强度模型[J]. 力学学报, 2014, 46(3): 389-397. DOI: 10.6052/0459-1879-13-312
Du Xiuli, Ma Chao, Lu Dechun. NONLINEAR UNIFIED STRENGTH MODEL OF GEOMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 389-397. DOI: 10.6052/0459-1879-13-312
Citation: Du Xiuli, Ma Chao, Lu Dechun. NONLINEAR UNIFIED STRENGTH MODEL OF GEOMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 389-397. DOI: 10.6052/0459-1879-13-312
杜修力, 马超, 路德春. 岩土材料的非线性统一强度模型[J]. 力学学报, 2014, 46(3): 389-397. CSTR: 32045.14.0459-1879-13-312
引用本文: 杜修力, 马超, 路德春. 岩土材料的非线性统一强度模型[J]. 力学学报, 2014, 46(3): 389-397. CSTR: 32045.14.0459-1879-13-312
Du Xiuli, Ma Chao, Lu Dechun. NONLINEAR UNIFIED STRENGTH MODEL OF GEOMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 389-397. CSTR: 32045.14.0459-1879-13-312
Citation: Du Xiuli, Ma Chao, Lu Dechun. NONLINEAR UNIFIED STRENGTH MODEL OF GEOMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 389-397. CSTR: 32045.14.0459-1879-13-312

岩土材料的非线性统一强度模型

基金项目: 国家自然科学基金(91215301,51278012)、国家重点基础研究发展计划(2011CB013600)和北京工业大学博士生创新奖学金资助项目.
详细信息
    作者简介:

    杜修力,教授,主要研究方向:地震工程.E-mail:duxiuli@bjut.edu.cn

  • 中图分类号: TU47

NONLINEAR UNIFIED STRENGTH MODEL OF GEOMATERIALS

Funds: The project was supported by the National Natural Science Foundation of China (91215301, 51278012), the National Basic Research Program of China (2011CB013600) and the Doctoral Fund of Innovation of Beijing University of Technology.
  • 摘要: 将材料的破坏归结为剪切破坏,每种材料对应于特定的剪切滑动面,抗剪强度为滑动面上正应力的函数,基于不同材料的强度特性将一系列的剪切滑动面统一起来,建立了岩土材料的非线性统一强度模型.非线性统一强度模型的滑动面为β应力空间内的等倾面,在β应力空间内的强度面为圆锥面;在普通应力空间内的强度面为一系列连续光滑、外凸的锥面,在偏平面上强度曲线涵盖了从下限Matsuoka-Nakai曲线到上限Drucker-Prager圆之间的所有区域,子午面上强度线为直线.非线性统一强度模型只有3个材料参数,参数都具有明确的物理意义,通过与国内外学者已取得的岩土类材料真三轴强度试验结果的比较,表明模型可适用于多种类型的材料,并合理描述其非线性强度特性.
    Abstract: The failure of material can be concluded to the shear fracture and each material has a specific shear sliding surface. The shear strength is the function of normal stress on sliding surface. A series of shear sliding surface is unified and nonlinear unified strength model of geo-materials is proposed. Sliding surface of nonlinear unified strength model is isoclinic surface in β stress space. The Strength surface of nonlinear unified strength model is circular conical surface in the β stress space and a series of conical surfaces are continuous smooth and convex in principal stress space. The nonlinear unified strength model can be illustrated as a curve between the Drucker-Prager and SMP in deviatoric plane, and as a straight line in meridian plane. There are only three mechanical parameters in the model which have definite physical meanings. Compared with large numbers of data under true triaxial tests, the applicability of nonlinear unified strength model is verified to different materials. And the proposed model can describe the nonlinear strength property of various materials reasonably.
  • Hoek E, Brown ET. Strength of jointed rock masses. Geotechnique, 1983, 33(3): 187-223
    Hoek E, Brown ET. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences,1997, 34(8): 1165-1186
    Mogi K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bulletin of the Earthquake Research Institute, University of Tokyo, 1966, 44: 215-232
    Mogi K. Fracture and flow of rocks under high trixial compression. Journal of Geophysical Research, 1971, 76: 1255-1269
    You MQ. True-triaxial strength criteria for rock. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 115-127
    Willam KJ, Warnke EP. Constitutive model for the triaxial behavior of concrete. In: International Association for Bridge and Structural Engineering Seminar on "Concrete Structure Subjected to Triaxial Stresses", 19th International Association for Bridge and Structural Engineering. Italy, Bergamo, 1975, 5: 1-30
    Lade PV, Duncan JM. Elasto-plastic stress-strain theory for cohesionlesssoil. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(10): 1037-1053
    lade PV, Kim MK. Single hardening constitutive model for soil, rock and concrete. International Journal of Solids and Structures, 1995, 32(14): 1963-1978
    姚仰平, 路德春, 周安楠等. 广义非线性强度理论及其变换应力空间. 中国科学E辑, 2004, 34(11): 1283-1299 (Yao Yangping, Lu Dechun, Zhou Annan, et al. Generalized non-linear strength theory and transformed stress space. Science in China Ser. E, 2004, 47(6): 691-709 (in Chinese))
    Zhang LY. A generalized three-dimensional Hoek-Brown strength criterion. Rock Mechanics and Rock Engineering, 2008, 41: 893-915
    Priest SD. Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion. Rock Mechanics and Rock Engineering, 2005, 38(4): 299-327
    Jiang H, Xie YL. A new three-dimensional Hoek-Brown strength criterion. Acta Mechanica Sinica, 2012, 28(2): 393-406
    Zienkiewicz OC, Pande GN. Some useful forms of isotropic yield surface for soil and rock mechanics. In: Pande GW. Finite Elements in Geomechnaics. London: Wiley, 1977. 179-190
    Lade PV, Wang Q. Analysis of shear banding in true triaxial tests on sand. Journal of Engineering Mechanics, ASCE, 2001, 127(8): 762-768
    Liu MD, Carter JP. General strength criterion for geomaterials. International Journal of Geomechanics, 2003, 3: 253-259
    Matsuoka H, Nakai T. Stress deformation and strength characteristics of soil under three different principal stresses, In: Proc. of JSCE, 1974, 232: 59-70
    Yu MH. Unified Strength Theory and its Applications. Berlin, Heidelberg: Springer, 2004
    路德春. 基于广义非线性强度理论的土的应力路径本构模型. [博士论文]. 北京: 北京航空航天大学, 2006 (Lu Dechun. A constitutive model for soils considering complex stress paths based on the generalized nonlinear strength theory. [PhD Thesis]. Beijing: Beihang University, 2006 (in Chinese)).
    路德春, 姚仰平, 邹博. 广义非线性强度理论体系. 岩土力学, 2007, 28(10): 2009-2016 (Lu Dechun, Yao Yangping, Zou Bo. System of generalized nonlinear strength theory. Rock and Soil Mechanics, 2007, 28(10): 2009-2016 (in Chinese))
    Du Xiuli, Lu Dechun, Gong Qiuming, et al. A non-linear unified strength criterion for concrete under 3-D stress states. Journal of Engineering Mechanics, ASCE, 2010, 136(1): 51-59
    Yu MH, Zan YW, Gao J. A unified strength criterion for rock material. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 975-989
    Launay P, Gachon H. Strain and ultimate strength of concrete under triaxial stresses. Special Publication SP-34, Journal of American Concrete Institute, 1970, 1: 269-282
    Lade PV, Musante HM. Three dimensional and strength characteristics of remolded clay. Journal of the Geotechnical Engineering Division, 1978, 104(2): 193-209
    Toyota H, Nakamura K, Sramoon W. Failure criterion of unsaturated soil considering tensile stress under three-dimensional stress conditions. Soils and Foundations, 2004, 44(5): 1-13
计量
  • 文章访问数:  1369
  • HTML全文浏览量:  95
  • PDF下载量:  1265
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-08
  • 修回日期:  2013-12-20
  • 刊出日期:  2014-05-17

目录

    /

    返回文章
    返回