Hoek E, Brown ET. Strength of jointed rock masses. Geotechnique, 1983, 33(3): 187-223
|
Hoek E, Brown ET. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences,1997, 34(8): 1165-1186
|
Mogi K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bulletin of the Earthquake Research Institute, University of Tokyo, 1966, 44: 215-232
|
Mogi K. Fracture and flow of rocks under high trixial compression. Journal of Geophysical Research, 1971, 76: 1255-1269
|
You MQ. True-triaxial strength criteria for rock. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 115-127
|
Willam KJ, Warnke EP. Constitutive model for the triaxial behavior of concrete. In: International Association for Bridge and Structural Engineering Seminar on "Concrete Structure Subjected to Triaxial Stresses", 19th International Association for Bridge and Structural Engineering. Italy, Bergamo, 1975, 5: 1-30
|
Lade PV, Duncan JM. Elasto-plastic stress-strain theory for cohesionlesssoil. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(10): 1037-1053
|
lade PV, Kim MK. Single hardening constitutive model for soil, rock and concrete. International Journal of Solids and Structures, 1995, 32(14): 1963-1978
|
姚仰平, 路德春, 周安楠等. 广义非线性强度理论及其变换应力空间. 中国科学E辑, 2004, 34(11): 1283-1299 (Yao Yangping, Lu Dechun, Zhou Annan, et al. Generalized non-linear strength theory and transformed stress space. Science in China Ser. E, 2004, 47(6): 691-709 (in Chinese))
|
Zhang LY. A generalized three-dimensional Hoek-Brown strength criterion. Rock Mechanics and Rock Engineering, 2008, 41: 893-915
|
Priest SD. Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion. Rock Mechanics and Rock Engineering, 2005, 38(4): 299-327
|
Jiang H, Xie YL. A new three-dimensional Hoek-Brown strength criterion. Acta Mechanica Sinica, 2012, 28(2): 393-406
|
Zienkiewicz OC, Pande GN. Some useful forms of isotropic yield surface for soil and rock mechanics. In: Pande GW. Finite Elements in Geomechnaics. London: Wiley, 1977. 179-190
|
Lade PV, Wang Q. Analysis of shear banding in true triaxial tests on sand. Journal of Engineering Mechanics, ASCE, 2001, 127(8): 762-768
|
Liu MD, Carter JP. General strength criterion for geomaterials. International Journal of Geomechanics, 2003, 3: 253-259
|
Matsuoka H, Nakai T. Stress deformation and strength characteristics of soil under three different principal stresses, In: Proc. of JSCE, 1974, 232: 59-70
|
Yu MH. Unified Strength Theory and its Applications. Berlin, Heidelberg: Springer, 2004
|
路德春. 基于广义非线性强度理论的土的应力路径本构模型. [博士论文]. 北京: 北京航空航天大学, 2006 (Lu Dechun. A constitutive model for soils considering complex stress paths based on the generalized nonlinear strength theory. [PhD Thesis]. Beijing: Beihang University, 2006 (in Chinese)).
|
路德春, 姚仰平, 邹博. 广义非线性强度理论体系. 岩土力学, 2007, 28(10): 2009-2016 (Lu Dechun, Yao Yangping, Zou Bo. System of generalized nonlinear strength theory. Rock and Soil Mechanics, 2007, 28(10): 2009-2016 (in Chinese))
|
Du Xiuli, Lu Dechun, Gong Qiuming, et al. A non-linear unified strength criterion for concrete under 3-D stress states. Journal of Engineering Mechanics, ASCE, 2010, 136(1): 51-59
|
Yu MH, Zan YW, Gao J. A unified strength criterion for rock material. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 975-989
|
Launay P, Gachon H. Strain and ultimate strength of concrete under triaxial stresses. Special Publication SP-34, Journal of American Concrete Institute, 1970, 1: 269-282
|
Lade PV, Musante HM. Three dimensional and strength characteristics of remolded clay. Journal of the Geotechnical Engineering Division, 1978, 104(2): 193-209
|
Toyota H, Nakamura K, Sramoon W. Failure criterion of unsaturated soil considering tensile stress under three-dimensional stress conditions. Soils and Foundations, 2004, 44(5): 1-13
|