EI、Scopus 收录
中文核心期刊

乘员股骨在轴向压力-弯矩下的损伤生物力学机理研究

蒋小晴, 杨济匡, 王丙雨, 张维刚

蒋小晴, 杨济匡, 王丙雨, 张维刚. 乘员股骨在轴向压力-弯矩下的损伤生物力学机理研究[J]. 力学学报, 2014, 46(3): 465-474. DOI: 10.6052/0459-1879-13-282
引用本文: 蒋小晴, 杨济匡, 王丙雨, 张维刚. 乘员股骨在轴向压力-弯矩下的损伤生物力学机理研究[J]. 力学学报, 2014, 46(3): 465-474. DOI: 10.6052/0459-1879-13-282
Jiang Xiaoqing, Yang Jikuang, Wang Bingyu, Zhang Weigang. AN INVESTIGATION OF BIOMECHANICAL MECHANISMS OF OCCUPANT FEMUR INJURIES UNDER COMPRESSION-BENDING LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 465-474. DOI: 10.6052/0459-1879-13-282
Citation: Jiang Xiaoqing, Yang Jikuang, Wang Bingyu, Zhang Weigang. AN INVESTIGATION OF BIOMECHANICAL MECHANISMS OF OCCUPANT FEMUR INJURIES UNDER COMPRESSION-BENDING LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 465-474. DOI: 10.6052/0459-1879-13-282
蒋小晴, 杨济匡, 王丙雨, 张维刚. 乘员股骨在轴向压力-弯矩下的损伤生物力学机理研究[J]. 力学学报, 2014, 46(3): 465-474. CSTR: 32045.14.0459-1879-13-282
引用本文: 蒋小晴, 杨济匡, 王丙雨, 张维刚. 乘员股骨在轴向压力-弯矩下的损伤生物力学机理研究[J]. 力学学报, 2014, 46(3): 465-474. CSTR: 32045.14.0459-1879-13-282
Jiang Xiaoqing, Yang Jikuang, Wang Bingyu, Zhang Weigang. AN INVESTIGATION OF BIOMECHANICAL MECHANISMS OF OCCUPANT FEMUR INJURIES UNDER COMPRESSION-BENDING LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 465-474. CSTR: 32045.14.0459-1879-13-282
Citation: Jiang Xiaoqing, Yang Jikuang, Wang Bingyu, Zhang Weigang. AN INVESTIGATION OF BIOMECHANICAL MECHANISMS OF OCCUPANT FEMUR INJURIES UNDER COMPRESSION-BENDING LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 465-474. CSTR: 32045.14.0459-1879-13-282

乘员股骨在轴向压力-弯矩下的损伤生物力学机理研究

基金项目: 国家科技部863计划资助项目(2006AA110101)、国家自然科学基金资助项目(51275164)、湖南大学汽车车身先进设计制造国家重点实验室自主研究课题(61075004)和教育部长江学者与创新团队发展计划(531105050037)资助项目.
详细信息
    作者简介:

    杨济匡,教授,博士生导师,主要研究方向:车辆碰撞安全及人体损伤生物力学.E-mail:jikuangyang@hnu.edu.cn

  • 中图分类号: U461.91

AN INVESTIGATION OF BIOMECHANICAL MECHANISMS OF OCCUPANT FEMUR INJURIES UNDER COMPRESSION-BENDING LOAD

Funds: The project was supported by National High Technology Research and Development Program of China (2006AA110101) and the National Natural Science Foundation of China (51275164), the Autonomous Subject Program of the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University (61075004) and the Program for Changjiang Scholars and Innovative Research Team in University (531105050037).
  • 摘要: 汽车前碰撞事故中在冲击力作用下乘员股骨经常产生骨折创伤.为研究乘员股骨在不同的轴向压力-弯矩作用下的损伤机理及其耐受限度值,首先建立了一个较为精细的50百分位乘员的坐姿下肢有限元模型,并通过模拟股骨动态三点弯曲及下肢的轴向膝部冲击实验对模型的有效性进行了验证.在此基础上,针对股骨在轴向压力-弯矩载荷下的断裂失效分别进行了曲梁力学模型分析及有限元虚拟实验研究.结果表明:股骨骨折位置依赖于膝部轴向压力及弯矩的载荷大小的变化,在预加载弯矩从0增加到676Nm时,股骨失效部位由股骨颈部转移到股骨干末端区域;失效部位发生在颈部及股骨干时的最大力矩分别为285 296Nm和381443Nm.股骨损伤机理的分析结果阐释了在膝部轴向冲击实验中失效部位位于股骨颈部,而在汽车前碰撞事故中仍有大量的股骨干骨折出现的原因.
    Abstract: Occupant femur fractures occur frequently under compression-bending load in the frontal crashes of passenger cars. In order to explore the injury mechanisms and tolerances of occupants' femur in this load condition, a finite element model of the lower extremity in the sitting posture was developed based on the anatomy of a 50th percentile male. Then the model was validated against two types of cadaver tests, including three-point dynamic bending test of the femur and the axial impact test on the knee-thigh complex. A study of femur fractures under compression-bending load has been carried out using an analytical model of the curved beam. Furthermore, six virtual tests were conducted using the validated finite element model. The results show that the location of bone fractures and the tolerance of the femur depend on both bending load and axial compression. With the increasing preload of the bending moment from 0 to 676Nm, the femur fracture location was shift from the femoral neck to the shaft. Regarding the tests with fractures occurring in the femoral neck, the tolerance of the femur is between 285 and 296Nm. For the other tests with fractures located in the femoral shaft, the tolerance of the femur is between 381 and 443Nm. The results indicated that the femur fractures always occurred at the femoral neck in axial impact tests on the knee-thigh complex, but in real world car frontal impacts the femoral shaft fractures can be observed frequently.
  • Laituri TR, Henry S, Kaye S, et al. Derivation and theoretical assessment of a set of biomechanics-based, AIS2+ risk equations for the knee-thigh-hip complex. Stapp Car Crash Journal, 2006, 50: 97-130
    Kuppa S, Wang J, Haffner M, et al. Lower extremity injuries and associated injury criteria. In: Processings of the 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV)-Amsterdam, The Netherlands, June 4-7, 2001
    Rupp JD. Biomechanics of hip injuries in frontal motor-vehicle crashes. [PhD Thesis]. Michigan: University of Michigan, 2006
    Silvestri C, Ray MH. Development of a finite element model of the kneethigh-hip of a 50th percentile male including ligaments and muscles. International Journal of Crashworthiness, 2009, 14(2): 215-229
    Burstein AH, Reilly DT, Marterns M. Aging of bone tissue mechanical properties. The Journal of Bone and Joint Surgery, 1976, 58-A(1): 82-86
    Kemper A, Mcnally C, Kennedy E, et al. The material properties of human tibia cortical bone in tension and compression: implications for the tibia index. In: Processings of the 20th International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV) in Lyon, France, June 18-21, 2007
    Martens M, Audekercke RV, Meester PD, et al. The mechanical characteristics of cancellous bone at the upper femoral region. Journal of Biomechanics, 1983, 16(12): 971-983
    Kim YS, Choi HH, Cho YN, et al. Numerical investigations of interactions between the knee-thigh-hip complex with vehicle interior structures. Stapp Car Crash Journal, 2005, 49: 85-115
    Beillas P, Begeman PC, Yang KH, et al. Lower limb: Advanced FE model and new experimental data. Stapp Car Crash Journal, 2001, 45: 469-494
    Untaroiu CD, Yue N, Shin J. A finite element model of the lower limb for simulating automotive impacts. Annals of Biomedical Engineering, 2013, 41(3): 513-526
    Rupp JD, Miller CS, Reed MP. et al. Characterization of knee impacts in frontal crashes. In: Processings of the 20th International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV) in Lyon, France, June 18-21, 2007
    Melvin JW, Richard LS, Alem NM., et al. Impact response and tolerance of the lower extremities. SAE Paper Number 751159, 1975
    Powell WR, Steven JO, Sunder HA, et al. Cadaver femur responses to longitudinal impacts. SAE Paper Number 751160,1975
    Morgan RM, Nichols H, Marcus JH, et al. Human cadaver and hybrid III responses to axial impacts of the femur. In: Processing of International IRCOBI Conference on the Biomechanics of Impacts. Bron, IRCOBI, 1990. 21-35
    Rupp JD, Reed MP, Chris AV, et al. The torelance of the human hip to dynamic knee loading. Stapp Car Crash Journal, 2002, 46: 211-228
    Chang CY, Rupp JD, Kikuchi N, et al. Development of a finite element model to study the effects of muscle forces on knee-thigh-hip injuries in frontal crashes. Stapp Car Crash Journal, 2008, 52: 475-504
    States JD. Adult occupant injuries of the lower limb. SAE Paper Number 861927. 1986
    Ivasson BJ, Genovese D, Crandall JR, et al. The tolerance of the femoral shaft in combined axial compression and bending loading. Stapp Car Crash Journal, 2009, 53: 251-290
    Untaroiu CD. A numerical investigation of mid-femoral injury tolerance in axial compression and bending loading. International Journal of Crashworthiness, 2010, 15(1): 83-92
    杨济匡, 方海峰. 人体下肢有限元动力学分析模型的建立和验证. 湖南大学学报(自然科学版), 2005, 32(5): 31-36 (Yang Jikuang, Fang Haifeng. Development and validation of a FE model of lower extremity for dynamics analysis. Journal of Hunan University (Natural Sciences), 2005,32(5):31-36 (in Chinese))
    韩勇, 杨济匡, 李凡,等. 汽车-行人碰撞中人体下肢骨折的有限元分析. 吉林大学学报(工学版), 2011, 41(1): 6-11 (Han Yong, Yang Jikuang, Li Fan, et al. Finite element analysis of lower extremity fractures in vehicle-pedestrian collision. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(1):6-11 (in Chinese))
    Yong H, Yang JK, Mizuno K. Virtual reconstruction of long bone fracture in car to pedestrian collisions using multibody system and finite element method. Chinese Journal of Mechanical Engineering, 2011, 24(6): 1045-1055
    张冠军, 曹立波, 官凤娇 等. 基于汽车与行人碰撞载荷特点的下肢长骨建模. 力学学报, 2011, 43(5): 939-947 (Zhang Guanjun, Cao Libo, Guan Fengjiao, et al. Development and validation of FE models for long bones of lower limb in vehicle-to-pedestrian crashes. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):939-947 (in Chinese))
    Robbins DH, Schneider LW, Snyder RG, et al. Seated posture of vehicle occupants. SAE Paper Number 831617, 1983
    贺毅. 膝关节的生物力学. 医用生物力学, 1998, 13(1): 58-65 (He Yi. Biomechanics of knee joint. Journal of Medical Biomechanics, 1998, 13(1): 58-65 (in Chinese))
    Livermore Software Technology Corporation, LS-DYNA, Keyword User's Manual. Version 971. Livermore, CA, 2007
    Takahashi Y, Kikuchi Y, Konosu A, et al. Development and validation of the finite element model for the human lower limb of pedestrians. Stapp Car Crash Journal, 2000, 44: 335-355
    Viano DC. Biomechanics of bone and tissue: A review of material properties and failure characteristics. SAE Paper Number 861923, 1986
    Mente PL, Lewis JL. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. Journal of Orthopaedic Research, 1994, 12(5): 637-647
    Anderson AE, Peters CL, Benjamin DT, et al. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. Journal of Biomechanical Engineering, 2005, 127: 364-373
    Linde F, Hvid I, Pongsoipetch B. Energy absorptive properties of human trabecular bone specimens during axial compression. Journal of Orthopaedic Research, 1989, 7(3): 432-439
    Repo RU, Finlay JB. Survival of articular cartilage after controlled impact. The Journal of Bone and Joint Surgery, 1977, 59-A(8): 1068-1076
    Dakin GJ, Arbelaez RA, Molz FJ, et al. Elastic and viscoelastic properties of the human pubic symphysis joint: Effects of lateral impact loading. Journal of Biomechanical Engineering, 2001, 123: 218-226
    Butler DL, Kay MD, Stouffer DC. Comparison of material properties in fascicle-bone units from human patellar tenden and knee ligaments. Journal of Biomechanics, 1986. 19(6): 425-432
    Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clinical Orthopaedics & Related Research, 1990, 252: 19-31
    Hewitt J, Guilak F, Richard G, et al. Regional material properties of the human hip joint capsule ligaments. Journal of Orthopaedic Research, 2001, 19(3): 359-364
    Untaroiu C, Darvish K, Crandall J. et al. A finite element model of the lower limb for simulating pedestrian impacts. Stapp Car Crash Journal, 2005, 49: 157-181
    Quapp KM, Weiss JA, Material characterization of human medial collateral ligament. Journal of Biomechanical Engineering, 1998, 120: 757-762
    Mo FH, Arnoux PJ, Cesari D, et al. The failure modelling of knee ligaments in the finite element model. International Journal of Crashworthiness, 2012, 17(6): 630-636
    Snedeker JG, Muser MH, Walz FH. Assessment of pelvis and upper leg injury risk in car-pedestrian collisions: Comparison of accident statistics, impactor tests and a human body finite element model. Stapp Car Crash Journal, 2003, 47: 437-457
    Funk JR, Kerrigan JR, Crandall JR. Dynamic bending tolerance and elastic plastic material properties of the human femur. In: Proceedings of the 48th Annual Proceedings Association for the Advancement of Automotive Medicine. Barrington, USA, September 13-15, 2004. 215-233
    Antoine S, Jolivet E, Quijano S, et al. Distribution and variability study of the femur cortical thickness from computer tomography. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15(sup1): 1-19
计量
  • 文章访问数:  1183
  • HTML全文浏览量:  103
  • PDF下载量:  1717
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-01
  • 修回日期:  2013-11-07
  • 刊出日期:  2014-05-17

目录

    /

    返回文章
    返回