EI、Scopus 收录
中文核心期刊

统一格式的显式与隐式任意混合异步算法

张伟伟, 金先龙

张伟伟, 金先龙. 统一格式的显式与隐式任意混合异步算法[J]. 力学学报, 2014, 46(3): 436-446. DOI: 10.6052/0459-1879-13-260
引用本文: 张伟伟, 金先龙. 统一格式的显式与隐式任意混合异步算法[J]. 力学学报, 2014, 46(3): 436-446. DOI: 10.6052/0459-1879-13-260
Zhang Weiwei, Jin Xianlong. AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 436-446. DOI: 10.6052/0459-1879-13-260
Citation: Zhang Weiwei, Jin Xianlong. AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 436-446. DOI: 10.6052/0459-1879-13-260
张伟伟, 金先龙. 统一格式的显式与隐式任意混合异步算法[J]. 力学学报, 2014, 46(3): 436-446. CSTR: 32045.14.0459-1879-13-260
引用本文: 张伟伟, 金先龙. 统一格式的显式与隐式任意混合异步算法[J]. 力学学报, 2014, 46(3): 436-446. CSTR: 32045.14.0459-1879-13-260
Zhang Weiwei, Jin Xianlong. AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 436-446. CSTR: 32045.14.0459-1879-13-260
Citation: Zhang Weiwei, Jin Xianlong. AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 436-446. CSTR: 32045.14.0459-1879-13-260

统一格式的显式与隐式任意混合异步算法

基金项目: 国家高技术研究发展计划(2012AA01AA307)国家自然科学基金(11072150,61073088)资助项目.
详细信息
    作者简介:

    金先龙,教授,主要研究方向:结构动力学的数值计算方法及应用、并行计算.E-mail:jxlong@sjtu.edu.cn

  • 中图分类号: O242.2;O342

AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT

Funds: The project was supported by the National High Technology Research and Development Program of China (2012AA01AA307) and the National Natural Science Foundation of China (11072150,61073088).
  • 摘要: 动力学问题的有限元分析需要在每一时步求解系统信息,相对于静力学问题,其计算量要大得多.因而,提高计算效率,节省计算工作量是动力学求解方法研究的主要内容.该文针对大型复杂动力学系统的高效求解问题,提出了一种基于Newmark离散格式的显式、隐式任意混合异步算法,根据整体系统不同局部的物理力学特性和求解精度要求,在空间域及时间域内对动力学系统方程进行多尺度求解.该方法根据显式、隐式算法固有的信息传递机制,采取动态的可变边界处理方法,避免了异步边界上的误差积累;并通过对整体系统能量平衡的校验,动态地确定和修正仿真计算时步,可以有效地预防不稳定性的产生和发展.数值算例表明:该算法能在保持较高的计算精度的同时,极大地降低计算资源消耗,因而具有一定的实用价值.
    Abstract: Dynamical finite element method requires solving system information at each time step, and the computational effort is much larger than solving the static ones. Thus, to improve computational efficiency and save computational effort is one the of the main research content in dynamics. The present paper introduces an arbitrarily mixed explicit-implicit asynchronous integration algorithm based on uniform Newmark discretization format, for the efficiently solving of the large and complex dynamic systems. The overall dynamical system can be partitioned into different parts according to the physical and mechanical properties, as well as the requirements of solution accuracy, and the system equation can be solved in multi-scale both at the space domain and time domain. According to the inherent message passing mechanisms of the explicit and implicit algorithm, a variable boundary treatment method was adopted to avoid the accumulation of errors at the asynchronous boundary. The simulation time steps were dynamically determined and corrected according to the energy balance checking, which can effectively prevent the emergence and development of the instability. Numerical example shows that the proposed algorithm can greatly reduce the consumption of computing resources while maintaining high accuracy, thus it has a high practical value.
  • Woelke P, Abboud N, Tennant D, et al. Ship impact study: Analytical approaches and finite element modeling. Shock and Vibration, 2012, 19(4): 515-525
    Xu HJ, Liu Y Q, Zhong W. Three-dimensional finite element simulation of medium thick plate metal forming and springback. Finite Elements in Analysis and Design, 2012, 51: 49-58
    Firat M, Karadeniz E, Yenice M, et al. Improving the accuracy of stamping analyses including springback deformations. Journal of Materials Engineering and Performance, 2013, 22(2): 332-337
    Behzad M, Alvandi M, Mba D, et al. A finite element-based algorithm for rubbing induced vibration prediction in rotors. Journal of Sound and Vibration, 2013, 332(21): 5523-5542
    Kacimi A E, Woodward P K, Laghrouche O, et al. Time domain 3D finite element modelling of train-induced vibration at high speed. Computers & Structures, 2013, 118:66-73.
    Kim J, Kang SJ, Kang BS. A comparative study of implicit and explicit FEM for the wrinkling prediction in the hydroforming process. The International Journal of Advanced Manufacturing Technology, 2003, 22(7-8): 547-552
    Oliver J, Huespe AE, Cante JC. An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems. Computer Methods in Applied Mechanics and Engineering, 2008, 197(21-24): 1865-1889
    Cai Y, Li G, Wang H, et al. Development of parallel explicit finite element sheet forming simulation system based on GPU architecture. Advances in Engineering Software, 2012, 45(1): 370-379
    Hadoush A, Boogaard AHVD. Efficient implicit simulation of incremental sheet forming. International Journal for Numerical Methods in Engineering, 2012, 90(5): 597-612
    李光耀,王琥,杨旭静 等. 板料冲压成形工艺与模具设计制造中的若干前沿技术. 机械工程学报, 2010, 46(10): 31-39 (Li Guangyao, Wang Hu, Yang Xujing, et al. Some new topics on process design and mould manufacture for sheet metal forming. Journal of Mechanical Engineering, 2010, 46(10): 31-39 (in Chinese))
    Noels L, Stainier L, Ponthot JP. Combined implicit/explicit algorithms for crashworthiness analysis. International Journal of Impact Engineering, 2004, 30(8-9): 1161-1177
    Noels L, Stainier L, Ponthot JP, et al. Combined implicit-explicit algorithms for non-linear structural dynamics. Revue Européenne des Éléments, 2002, 11(5): 565-591  Revue Europ" target=_blank>
    Noels L, Stainier L, Ponthot JP. Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics. Computer Methods in Applied Mechanics and Engineering, 2006, 195(19-22): 2169-2192
    Belytschko T, Mullen R. Stability of explicit-implicit mesh partitions in time integration. International Journal for Numerical Methods in Engineering, 1978, 12(10): 1575-1586
    Belytschko T, Yen HJ, Mullen R. Mixed methods for time integration. Computer Methods in Applied Mechanics and Engineering, 1979, 17-18(2): 259-275
    Liu WK, Belytschko T. Mixed-time implicit-explicit finite elements for transient analysis. Computers and Structures, 1982, 15(4): 445-450
    Belytschko T, Liu WK, Smolinski P. Multi-stepping implicit-explicit procedures in transient analysis. In: Proceedings of the International Conference on Innovative Methods for Nonlinear Problems. Swansea, U.K.: Pineridge Press International Ltd. 1984
    Smolinski P. An explicit multi-time step integration method for second order equations. Computer Methods in Applied Mechanics and Engineering, 1992, 94(1): 25-34
    Smolinski P. Subcycling integration with non-integer time steps for structural dynamics problems. Computers & Structures, 1996, 59(2): 273-281
    Daniel WJT. The subcycled Newmark algorithm. Computational Mechanics, 1997, 20(3): 272-281
    Smolinski P, Wu YS. An implicit multi-time step integration method for structural dynamics problems. Computational Mechanics, 1998, 22(4): 337-343
    Wu YS, Smolinski P. A multi-time step integration algorithm for structural dynamics based on the modified trapezoidal rule. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3-4): 641-660
    Daniel WJT. A partial velocity approach to subcycling structural dynamics. Computer Methods in Applied Mechanics and Engineering, 2003, 192(3-4): 375-394
    高晖,李光耀,钟志华等. 汽车碰撞计算机仿真中的子循环法分析. 机械工程学报, 2005, 41(11): 98-101 (Gao Hui, Li Guangyao, Zhong Zhihua, et al. Analysis of subcycling algorithms for computer simulation of crashworthiness. Chinese Journal of Mechanical Engineering, 2005, 41(11): 98-101 (in Chinese))
    缪建成,朱平,陈关龙等. 多柔体系统响应计算的子循环计算方法研究. 力学学报, 2008, 40(4): 511-519(Miao Jiancheng, Zhu Pin, Chen Guanlong, et al. Study on sub-cycling algorithm for flexible multi-body system. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 511-519 (in Chinese))
    Pugal D, Solin P, Kim KJ, et al. Modeling ionic polymer-metal composites with space-time adaptive multimesh hp-FEM. Communications in Computational Physics, 2012, 11: 249-270
    Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Mineola, NY: Dover Publications Inc, 2000
    Remennikov AM. A review of methods for predicting bomb blast effects on buildings. Journal of Battlefield Technology, 2003, 6(3): 5-10
    Ngo T, Mendis P, Gupta A, et al. Blast loading and blast effects on structures-An overview. Electronic Journal of Structural Engineering, 2007, 7(Special Issue: Loading on Structures): 76-91
    Saatcioglu M, Ozbakkaloglu T, Naumoski N, et al. Response of earthquake-resistant reinforced-concrete buildings to blast loading. Canadian Journal of Civil Engineering, 2009, 36(8): 1378-1390
计量
  • 文章访问数:  1374
  • HTML全文浏览量:  138
  • PDF下载量:  1524
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-06
  • 修回日期:  2013-12-10
  • 刊出日期:  2014-05-17

目录

    /

    返回文章
    返回