EI、Scopus 收录
中文核心期刊

边界元中计算任意高阶奇异线积分的直接法

高效伟, 冯伟哲, 杨恺

高效伟, 冯伟哲, 杨恺. 边界元中计算任意高阶奇异线积分的直接法[J]. 力学学报, 2014, 46(3): 428-435. DOI: 10.6052/0459-1879-13-248
引用本文: 高效伟, 冯伟哲, 杨恺. 边界元中计算任意高阶奇异线积分的直接法[J]. 力学学报, 2014, 46(3): 428-435. DOI: 10.6052/0459-1879-13-248
Gao Xiaowei, Feng Weizhe, Yang Kai. A DIRECT METHOD FOR EVALUATING LINE INTEGRALS WITH ARBITRARY HIGH ORDER OF SINGULARITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 428-435. DOI: 10.6052/0459-1879-13-248
Citation: Gao Xiaowei, Feng Weizhe, Yang Kai. A DIRECT METHOD FOR EVALUATING LINE INTEGRALS WITH ARBITRARY HIGH ORDER OF SINGULARITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 428-435. DOI: 10.6052/0459-1879-13-248
高效伟, 冯伟哲, 杨恺. 边界元中计算任意高阶奇异线积分的直接法[J]. 力学学报, 2014, 46(3): 428-435. CSTR: 32045.14.0459-1879-13-248
引用本文: 高效伟, 冯伟哲, 杨恺. 边界元中计算任意高阶奇异线积分的直接法[J]. 力学学报, 2014, 46(3): 428-435. CSTR: 32045.14.0459-1879-13-248
Gao Xiaowei, Feng Weizhe, Yang Kai. A DIRECT METHOD FOR EVALUATING LINE INTEGRALS WITH ARBITRARY HIGH ORDER OF SINGULARITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 428-435. CSTR: 32045.14.0459-1879-13-248
Citation: Gao Xiaowei, Feng Weizhe, Yang Kai. A DIRECT METHOD FOR EVALUATING LINE INTEGRALS WITH ARBITRARY HIGH ORDER OF SINGULARITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 428-435. CSTR: 32045.14.0459-1879-13-248

边界元中计算任意高阶奇异线积分的直接法

基金项目: 国家自然科学基金资助项目(11172055,11202045).
详细信息
    作者简介:

    杨恺,博士,主要研究方向:计算力学.E-mail:KYang@dlut.edu.cn

  • 中图分类号: O302

A DIRECT METHOD FOR EVALUATING LINE INTEGRALS WITH ARBITRARY HIGH ORDER OF SINGULARITIES

Funds: The project was supported by the National Natural Science Foundation of China (11172055, 11202045).
  • 摘要: 提出了一种精确计算任意高阶奇异曲线积分的直接计算法.首先将曲线单元上的各种几何量用投影线上的几何量来表示,然后通过幂级数展开和解析的方法显式地消除了积分的奇异性.还导出了计算等参坐标对局部直角坐标偏导数的表达式.由于这种方法涉及到的是总体尺度间的坐标变换,操作起来直观明了,可以处理二维问题边界元分析中出现的任意高阶奇异边界积分.最后用具体算例验证该方法的正确性.
    Abstract: This paper presents a new direct method for evaluating arbitrary singular boundary integrals appearing in 2D boundary element analysis. Firstly, geometry quantities on a curved line element are expressed using those projected on a tangential line. Then, singularities involved in the integrals are analytically removed by expressing the non-singular part of the integration kernel as power series. A set of formulations for computing the first and second derivatives of intrinsic coordinates with respect to local orthogonal coordinates are also presented in the paper for the first time. Since the coordinate transformation is at the real spatial scale, the operation is straightforward and convenient, and can be applied to treat arbitrary high order of singular integrals. Finally, some examples are given to verify the correctness and stability of the presented method.
  • Gao XW. An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals.Comput Methods Appl Mech Engrg, 2010, 199: 2856-2864
    Guiggiani M, Krishnasamy G, Rudolphi TJ, et al. A general algorithm for the numerical solution of hypersingular boundary integral equations, J Appl Mech, 1992, 59: 604-614
    Karami G, Derakhshan D. An efficient method to evaluate hypersingular and supersingular integrals in boundary integral equations analysis. Engineering Analysis with Boundary Elements, 1999, 23: 317-326
    Huber O, Lang A, Kuhn G. Evaluation of the stress tensor in 3D elastostatics by direct solving of hypersingular integrals. Computational Mechanics, 1999, 12: 39-50
    Mukherjee S, Mukherjee YX. The hypersingular boundary contour method for three-dimensional linear elasticity. ASME Journal of Applied Mechanics, 1998, 65: 300-309
    Marczak RJ, Creus GJ. Direct evaluation of singular integrals in boundary element analysis of thick plates. Engineering Analysis with Boundary Elements , 2002, 26: 653-665
    Gao XW. Numerical evaluation of two-dimensional singular boundary integrals-Theory and fortran code. Journal of Computational and Applied Mathematics, 2006, 188(1): 44-64
    Liu YJ. Analysis of shell-like structures by the boundary element method based on 3-D elasticity, formulation and verification. Int J Numer Meth Engng , 1998, 41(3): 541-558  3.0.CO;2-K" target=_blank>
    Ma H, Kamiya N. Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method. Engineering Analysis with Boundary Elements, 2002, 26(4): 329-339
    牛忠荣,王秀喜,周焕林.三维边界元法中几乎奇异积分的正则化算法.力学学报, 2004, 36(1): 49-56 (Niu Zhongrong, Wang Xiuxi, Zhou Huanlin. A regularization algorithm for the nearly singular integrals in 3-D BEM. Acta Mechanica Sinica, 2004, 36(1): 49-56 (in Chinese))
    张耀明, 孙翠莲, 谷岩.边界积分方程中近奇异积分计算的一种变量替换法, 力学学报, 2008, 40(2): 207-214 (Zhang Yaoming, Sun Cuilian, Gu Yan. The evaluation of nearly singular integrals in the boundary integral equations with variable transformation. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 207-214 (in Chinese))
    Qin XY, Zhang JM, Xie GZ, et al. A general algorithm for the numerical evaluation of nearly singular integrals on 3D boundary element. Journal of Computational and Applied Mathematics , 2011, 235: 4174-4186
    Gao XW, Davies TG. Boundary Element Programming in Mechanics. London: Cambridge University Press, 2002
    Zhou HL, Niu ZR, Cheng CZ, et al. Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems. Computers & Structures, 2008, 86 (15-16): 1656-1671
计量
  • 文章访问数:  1209
  • HTML全文浏览量:  85
  • PDF下载量:  1089
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-29
  • 修回日期:  2013-11-17
  • 刊出日期:  2014-05-17

目录

    /

    返回文章
    返回