EI、Scopus 收录
中文核心期刊

考虑导轨间隙的在轨分离动力学计算方法

COMPUTATIONAL METHOD FOR DYNAMICS SIMULATION OF PAYLOAD SEPARATION FROM SATELLITE WITH RAIL CLEARANCE

  • 摘要: 传统在轨分离载荷动力学分析未考虑实际导轨的实时接触,无法准确分析分离时刻载荷的速度和角速度。针对半圆形双导轨,研究了空间导轨与定向器接触的特点及形式,基于分离装置的几何构型提出了一种确定发生相对轴向运动时导轨与定向器潜在接触对的方法,所提方法考虑了载荷轴线与导轨轴线的空间夹角,保证了分离后期接触检测的准确性,并可推广至多导轨接触计算。基于Lankarani与Nikravesh的连续接触力模型计算法向碰撞力,采用修正的Coulomb模型计算切向摩擦力。最后对飘浮基挠性航天器在轨分离载荷模型进行数值分析,验证了方法的有效性。结果表明导轨间隙增大了接触碰撞力,且随间隙的增大垂直于载荷分离方向的速度和角速度增大,导轨间隙使基座的转动与挠性附件强烈耦合,对航天器的稳定性造成影响。

     

    Abstract: Traditional researches on payload separation from spacecraft don't consider actual contacts in rail clearance, and separation velocity of payload can't be assessed accurately. According to two semicircle rails, characteristics of contacts between spatial rail and director were investigated. A method for detecting potential contact points between director and rail with relative movements was presented based on the structural features. Spatial angle between the director and the rail is calculated to detect contact exactly in the later stage of separation. The normal contact force was modeled using the continuous approach proposed by Lankarani and Nikravesh, and the tangent friction was calculated by a modified Coulomb's friction law. Validity of the methodology is proved through a free-floating flexible spacecraft model. And the results show that rail clearance causes high contact forces, and velocity vertical to the separation direction increases with clearance size. Further more, clearance aggravates the coupling between the appendages and the base, and effects spacecraft's stability.

     

/

返回文章
返回