EI、Scopus 收录
中文核心期刊

基于混合网格的高阶间断有限元黏流数值解法

HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH

  • 摘要: 针对层流NS方程发展了混合网格上的高阶间断有限元方法,给出了物面边界高阶近似的具体步骤以及近物面弯曲单元的处理方法。对数值离散产生的非线性方程组采用牛顿迭代进行求解,每个牛顿循环采用预处理广义最小余量法求解产生的大型稀疏线性系统。使用该方法得到了典型算例的数值结果,并跟前人的计算结果进行了比较。计算结果表明,混合网格上应用高阶间断有限元方法求解黏性流动具有很好的应用前景。

     

    Abstract: A high-order discontinuous Galerkin method (DGM) based on hybrid mesh was developed to solve the laminar NS equations. Details on high order approximation of the real solid boundary were given. Newton method was used to solve the resulting nonlinear system after the DG discretization. In each Newton loop, preconditioned GMRES method was adopted to solve the large sparse linear systems. Numerical results indicate that the developed DG method on hybrid mesh is a promising way to solve viscous flow cases.

     

/

返回文章
返回