EI、Scopus 收录
中文核心期刊

脆性裂纹动态传播中的速度振荡现象和理论分析

EXPERIMENTAL AND THEORETICAL INVESTIGATIONS ON THE VELOCITY OSCILLATIONS OF DYNAMIC CRACK PROPAGATING IN BRITTLE MATERIAL TENSION

  • 摘要: 设计了一种精确测量裂纹在预拉伸带板中的传播速度的实验装置, 系统研究了裂纹在受不同预加载荷作用的不同尺寸的有机玻璃 板中的传播行为.实验结果表明:在一个细长、上下表面固定的带板中, 裂纹速度分为加速和稳定2个阶段.在稳定速度阶段, 裂纹平均速度v0 是预加载荷在板中储存的弹性能Wh的增函数.由于此时裂纹处于自相似传播阶段, 可以认为材料的动态断裂能Gc是裂纹传播速度v0的增函数, 即材料存在"速度增韧性".当裂纹传播速度达到一定阈值, 裂纹的传播速度出现明显的振荡现象, 裂纹的振荡周期与断裂面出现的周期性沟槽的尺度一致.在更高的预加能量下, 裂纹传播路径出现弯曲、微分岔以及宏观分岔现象.建立了一个描述裂纹在带板中的直线传播行为的动力学模型, 并用这个模型模拟裂纹在传播过程中的速度振荡现象.

     

    Abstract: To study the propagating behavior of a dynamic crack in brittle material, an experimental technique was developed to measure the propagation speed of a fast crack in a preloaded brittle polymethylmethacrylate (PMMA) strip. The experimental results show that for each preloaded strip, the crack arrives at a steady velocity v0 after a short acceleration stage, when the crack propagation is self-similar. The steady propagation velocity was found to be an increasing function of the energy Gc stored in the preloaded strip, which means that the material has a "speed toughening" property. When the crack speed exceeds a threshold, the crack speed exhibits apparent oscillations. This crack speed oscillation corresponds to the microscopic periodic grooves on the fractured surface. Further increase of the pre-stored elastic energy results in the curving, micro-branching, and full bifurcations of the cracks. Based on the energy conservation theory, a dynamic model is established to describe the motion of the crack. This motion equation is used to explain the crack speed oscillations during propagations.

     

/

返回文章
返回