EI、Scopus 收录
中文核心期刊

利用重正化群方法研究强旋转湍流的统计性质

THE RENORMALIZATION-GROUP ANALYSIS FOR THE STATISTICAL PROPERTIES OF RAPIDLY ROTATING TURBULENCE

  • 摘要: 利用重正化群方法对强旋转湍流场统计性质予以研究, 通过重正化微扰展开, 对高波数速度分量进行逐 阶平均.计算结果显示当旋转角速度Ω → ∞时, 用以表征高波数速度分量对低波数速度分量影响的重正化黏性将趋于0, 这表明在强旋转条件下科氏力将抑制湍流速度分量之间的非线性相互作用, 从而阻碍湍流的能量级串效应, 当Ω → ∞时湍流的能量级串效应消失, 导致湍流脉动消失, 流动将层流化.理论计算结果还显示对于强旋转湍流, 时域-空域联立Fourier的湍流速度分量存在二维化趋势, 球面平均能谱函数有标度关系E(k) ∝ k-3.

     

    Abstract: The statistical properties for rapidly rotating turbulence are investigated using the renormalization-group method. With the renormalized perturbation, the high wavenumber velocity components are taken to be average successively. The calculations show that the renormalized viscosity, which represents the influence of the high wavenumber velocity components upon the low wavenumber velocity components, tends to zero at the limit of the rotational angular velocity Ω → ∞. It indicates that the Coriolis force will impede the nonlinear interactions among different wavenumber velocity components. At the limit Ω → ∞, the turbulent energy cascade will diminish to zero. Consequently the flow tends towards laminarization as the turbulent fluctuations disappear. The calculations also show that the space-time Fourier velocity components tend to two-dimensionalization and the spherically averaged energy spectrum have the scaling behavior E(k) ∝ k-3 for rapidly rotating turbulence.

     

/

返回文章
返回