EI、Scopus 收录
中文核心期刊

同轴旋转可压缩流动中液体射流稳定性

吕明, 宁智, 阎凯, 付娟, 宋云超, 孙春华

吕明, 宁智, 阎凯, 付娟, 宋云超, 孙春华. 同轴旋转可压缩流动中液体射流稳定性[J]. 力学学报, 2013, 45(3): 323-330. DOI: 10.6052/0459-1879-12-223
引用本文: 吕明, 宁智, 阎凯, 付娟, 宋云超, 孙春华. 同轴旋转可压缩流动中液体射流稳定性[J]. 力学学报, 2013, 45(3): 323-330. DOI: 10.6052/0459-1879-12-223
Lü Ming, Ning Zhi, Yan Kai, Fu Juan, Song Yunchao, Sun Chunhua. STUDY ON THE STABILITY OF LIQUID JET IN COAXIAL SWIRLING COMPRESSIBLE FLOW UNDER SUPERCAVITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 323-330. DOI: 10.6052/0459-1879-12-223
Citation: Lü Ming, Ning Zhi, Yan Kai, Fu Juan, Song Yunchao, Sun Chunhua. STUDY ON THE STABILITY OF LIQUID JET IN COAXIAL SWIRLING COMPRESSIBLE FLOW UNDER SUPERCAVITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 323-330. DOI: 10.6052/0459-1879-12-223
吕明, 宁智, 阎凯, 付娟, 宋云超, 孙春华. 同轴旋转可压缩流动中液体射流稳定性[J]. 力学学报, 2013, 45(3): 323-330. CSTR: 32045.14.0459-1879-12-223
引用本文: 吕明, 宁智, 阎凯, 付娟, 宋云超, 孙春华. 同轴旋转可压缩流动中液体射流稳定性[J]. 力学学报, 2013, 45(3): 323-330. CSTR: 32045.14.0459-1879-12-223
Lü Ming, Ning Zhi, Yan Kai, Fu Juan, Song Yunchao, Sun Chunhua. STUDY ON THE STABILITY OF LIQUID JET IN COAXIAL SWIRLING COMPRESSIBLE FLOW UNDER SUPERCAVITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 323-330. CSTR: 32045.14.0459-1879-12-223
Citation: Lü Ming, Ning Zhi, Yan Kai, Fu Juan, Song Yunchao, Sun Chunhua. STUDY ON THE STABILITY OF LIQUID JET IN COAXIAL SWIRLING COMPRESSIBLE FLOW UNDER SUPERCAVITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 323-330. CSTR: 32045.14.0459-1879-12-223

同轴旋转可压缩流动中液体射流稳定性

基金项目: 国家自然科学基金(51276011),国家高技术研究发展计划(2013AA065303),北京市自然科学基金(3132016)和中央高校基本科研业务费专项基金(M12JB00090)资助项目.
详细信息
    通讯作者:

    宁智,教授,主要研究方向:流体力学、汽车排放、控制技术、内燃机燃烧与污染控制等.E-mail:zhining@bjtu.edu.cn

  • 中图分类号: O358

STUDY ON THE STABILITY OF LIQUID JET IN COAXIAL SWIRLING COMPRESSIBLE FLOW UNDER SUPERCAVITATION

Funds: The project was supported by the National Natural Science Foundation of China (51276011), the National High Technology Research and Develop- ment Program of China (2013AA065303), the Natural Science Foundation of Beijing (3132016) and the Fundamental Research Funds for the Central Universities (M12JB00090).
  • 摘要: 基于线性稳定性理论,建立了描述同轴旋转可压缩流动中超空化条件下液体射流稳定性的数学模型,并对数学模型及其求解方法进行了验证;在此基础上,对模型中考虑的射流及气体可压缩性、气体同轴旋转以及超空化等因素对射流稳定性的影响进行了分析. 分析结果表明,模型中考虑射流及气体的可压缩性后,与不考虑可压缩性相比,计算得到的射流稳定性明显变差,最小液滴直径减小,分裂液滴直径变化范围变宽,且小液滴数量增多. 气体的同轴旋转在轴对称与非轴对称扰动下对射流稳定性的影响完全相反;轴对称扰动时,气体旋转使射流稳定性增强,而非轴对称扰动时则正好相反;气体旋转有可能导致影响射流稳定性的扰动模式发生根本性变化. 超空化使射流稳定性变差;超空化程度较弱时,超空化使分裂液滴最小直径减小,分裂液滴直径变化范围增大;而超空化达到一定程度后,进一步提高超空化程度,分裂液滴最小直径几乎保持不变.
    Abstract: In this paper, a mathematical model is presented for studying on the stability of compressible liquid jet in a coaxial swirling compressible airstream. The mathematical model and its solving method are verified by the data in literature, and the influences of compressibility, swirling gas and supercavitation on the stability of liquid jet are investigated, respectively. The results show that compressibility plays an important role in the instability of liquid jet. The range of wave numbers, the drop distributions and the drop diameters are changed due to compressibility. The effects of swirling gas on the stability of liquid jet are different in various disturbance modes. However, gas swirling has little impact on drop diameters. It is also found that the liquid jet becomes more unstable due to the greater supercavitating condition. Supercavitation with a small void fraction gets the greater wave numbers and the smaller drop diameters, while it draws different conclusion when void fraction reaches a certain value.
  • 杜青, 史绍熙, 刘宁等. 液体燃料射流最不稳定频率的理论分析(1)--液体燃料射流的最不稳定频率及无量纲数的影响. 内燃机学报, 2000, 18(3): 283-287 (Du Qing, Shi Shaoxi, Liu Ning, et al. A theoretical analysis of most unstable frequency of a liquid fuel jet breakup (1)——Effects of dimensionless numbers on most unstable frequency. Transactions of CSICE, 2000, 18(3): 283-287 (in Chinese))
    阎凯, 宁智, 吕明. 圆环旋转黏性液体射流空间不稳定性研究. 力学学报, 2012, 44(4): 687-693 (Yan Kai, Ning Zhi, Lü Ming. Spatial instability analysis of an annular swirling viscous liquid jet. Chinese Journal of Theoretical and Applied Mechanics , 2012, 44(4): 687-693 (in Chinese))
    Yuan W, Schnerr GH. Numerical simulation of two-phase flow in injection nozzles: Interaction of cavitation and external jet formation. Journal of Fluids Engineering, 2003, 125: 963-969
    Payri R, Garcia JM, Salvador FJ, et al. Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 2005, 84: 551-561
    Sarre CK, Kong SC, Reitz RD. Modeling the effects of injector nozzle geometry on diesel sprays. SAE Paper 1999-01-0912, 1999
    Blessing M, Konig G, Kruger C, et al. Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation. SAE Paper 2003-01-1358, 2003
    Sou A, Hosokawa S, Tomiyama A. Effects of Cavitation in a nozzle on liquid jet atomization. International Journal of Heat and Mass Transfer, 2007, 50(17-18): 3575-3582
    Tamaki N. Effects of cavitation in a nozzle hole on atomization of spray and development of high- efficiency atomization enhancement nozzle. ICLASS, 2009
    Safari SD. Effects of cavitation on high-pressure atomization. [PhD Thesis]. Irvine: University of California, 2009
    Payri R, Salvador FJ, Gimeno J, et al. Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. International Journal of Heat and Fluid Flow, 2009, 30: 768-777
    Desantes JM, Payri R, Salvador FJ, et al. Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions. Fuel, 2010, 89: 3033-3041
    Hadji L, Schreiber W. The stability of an inviscid liquid sheet containing vapor bubbles. Journal of Physical and Natural Sciences, 2007, 1(2): 1-11
    严春吉. 可压缩气体中的三维黏性液体射流雾化机理. 内燃机学报, 2007, 25(4): 346-351 (Yan Chunji. Atomization mechanisms of 3-D viscous liquid jets in a compressible gas. Transactions of CSICE, 2007, 25(4): 346-351 (in Chinese))
    Zhou ZW, Lin SP. Effects of compressibility on the atomization of liquid jets. Journal of Propulsion and Power, 1992, 8(2): 736-740
    高宗英. 气、液两相介质中压力波传播速度的研究. 工程热物理学报, 1984, 5(2): 200-205 (Gao Zongying. A study of the propagation velocity of pressure wave in gas-liquid two phase mixtures. Journal of Engineering Thermophysics, 1984, 5(2): 200-205 (in Chinese))
    Lin SP, Lian ZW. Mechanisms of the breakup of liquid jets. AIAA Journal, 1990, 28(1): 120-126
    Mulemane A, Subramaniyam S, Lu PH, et al. Comparing cavitation in diesel injectors based on different modeling approaches. SAE Paper 2004-01-0027, 2004
    Jia M, Hou D, Li J, et al. A micro-variable circular orifice fuel injector for HCCI-conventional engine combustion-Part I numerical simulation of cavitation. SAE Paper 2007-01-0249, 2007
    Wang X, Su WH. A numerical study of cavitating flows in high-pressure diesel injection nozzle holes using a two-fluid model. Chinese Science Bulletin, 2009, 54(10): 1655-1662
计量
  • 文章访问数:  1695
  • HTML全文浏览量:  115
  • PDF下载量:  952
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-27
  • 修回日期:  2012-12-09
  • 刊出日期:  2013-05-17

目录

    /

    返回文章
    返回