EI、Scopus 收录
中文核心期刊

非理想太阳帆推力的不确定性量化与轨迹影响分析

UNCERTAINTY QUANTIFICATION OF THRUST AND TRAJECTORY IMPACT ANALYSIS FOR NON-IDEAL SOLAR SAILS

  • 摘要: 太阳帆作为一种极具前景的无工质推进技术, 其在轨性能受到多种不确定性因素的显著影响, 给太阳帆任务的精确轨道控制、长期性能评估与可靠性设计带来了严峻挑战. 为量化姿态角偏差、帆面变形、褶皱分布及光学系数等多源不确定性因素对太阳帆推力及轨道的综合影响, 本文构建了基于蒙特卡洛方法的不确定性分析框架. 此外, 本文对各不确定性因素进行了详细的数学描述和建模: 姿态角偏差采用Ornstein-Uhlenbeck随机过程进行建模, 帆面变形遵循Gauvain和Tyler为Solar Cruiser提出的变形模型, 并结合实验数据为帆面褶皱与光学系数建立了概率分布模型. 在此基础上, 基于广义帆模型建立了非理想推力模型, 实现了对推力随机特性的不确定性量化. 结果发现, 多源不确定性因素的综合效应不仅导致主推力期望值下降, 更引起了显著的横向推力随机波动, 从而降低了推力矢量的可控性. 进一步, 以日心抬轨任务为算例的轨道演化仿真表明, 这种推力不确定性将造成航天器轨道半长轴的增益衰减和轨道倾角的持续漂移, 最终导致任务末端状态的显著弥散, 降低了长期任务的可预测性. 本文的研究工作对深空太阳帆任务的性能评估、可靠性设计及任务规划具有重要的参考意义.

     

    Abstract: As a highly promising propellantless propulsion technology, the in-orbit performance of solar sails is significantly influenced by multiple uncertainty factors, posing severe challenges to the precise orbital control, long-term performance evaluation, and reliability design of solar sail missions. To quantify the combined effects of multi-source uncertainties—including attitude angle deviation, sail deformation, wrinkle distribution, and optical coefficients—on solar sail thrust and orbit, this study establishes an uncertainty analysis framework based on the Monte Carlo method. Furthermore, this paper provides a detailed mathematical description and modeling for each uncertainty factor: the attitude angle deviation is modeled using an Ornstein-Uhlenbeck stochastic process, the sail deformation follows the deformation model proposed by Gauvain and Tyler for the Solar Cruiser, and probability distribution models for sail wrinkles and optical coefficients are established based on experimental data. Building upon this, a non-ideal thrust model is developed from a generalized sail model to achieve the quantitative uncertainty analysis of the thrust's stochastic characteristics. The results reveal that the combined effect of multi-source uncertainties not only leads to a reduction in the expected main thrust but also induces significant random fluctuations in the lateral thrust, thereby degrading the controllability of the thrust vector. Furthermore, orbital evolution simulations for a heliocentric orbit-raising mission demonstrate that this thrust uncertainty will cause a continuous decay in the semi-major axis gain and a persistent drift in the orbital inclination, ultimately leading to a significant dispersion of the final mission state and reducing the predictability of long-term missions. This research provides a crucial reference for the performance evaluation, reliability design, and mission planning of deep-space solar sail missions.

     

/

返回文章
返回