EI、Scopus 收录
中文核心期刊

高焓等离子体鞘套MHD调控数值研究

NUMERICAL SIMULATION OF PLASMA SHEATH MAGNETOHYDRODYNAMIC CONTROL FOR HIGH ENTHALPY FLOW FIELDS

  • 摘要: 基于双温度有限速率化学反应磁流体动力学(MHD)模型, 建立高焓热化学非平衡流场、外加磁场及霍尔电场耦合计算方法, RAM-C II钝锥模型用于算例验证. 数值分析不同飞行工况下典型再入飞行器等离子体鞘套电磁参数MHD控制效果. 研究表明: 建立的双温度热化学非平衡数值计算方法能较为准确的模拟再入飞行器气动物理环境. 感应电流和磁场相互作用产生洛伦兹力导致气体减速效果增强, 动能转化为内能, 流场高温区增大; 另一方面, 洛伦兹力改变激波形状, 影响局部等离子体鞘套电磁参数空间分布. 再入高度越高, 洛伦兹力对等离子体分布及其电磁波传输的影响越大, 飞行高度H = 71.73 km, MHD作用下通讯天线窗口截面位置电子数密度峰值降低幅度可达2个量级, 但等离子体鞘套厚度大幅增加.

     

    Abstract: Based on a two-temperature with finite-rate chemical reactions magnetohydrodynamic (MHD) model, a coupled calculation method is established for the high enthalpy thermochemical non-equilibrium flow field, external magnetic field and Hall electric field. The experimental data of Radio Attenuation Measurement-C-II are used to validate the numerical model established in the present study. Numerical simulation was adopted to analysis the effect of MHD control on typical reentry vehicles plasma sheath parameters under different flight conditions. Results demonstrate that the developed multi-field coupling numerical calculation method accurately predicts the aerodynamic physical environment of the reentry vehicle. The interaction between the induced electric current and the magnetic field generates the Lorenz force, which decelerates the plasma flow in the shock layer. In consequence, the kinetic energy is transformed into internal energy, which increases the area of high temperature region. On the other hand, the Lorenz force can change the spatial distribution of electromagnetic parameters of plasma sheath. The influence of Lorentz force on plasma distribution and electromagnetic wave propagation increases with the increase in flight altitude. At the altitude of 71.73km, the electron number density decreased by two order of magnitude under the effect of Lorentz force near the antenna window region, and the thickness of plasma sheath increases greatly.

     

/

返回文章
返回