EI、Scopus 收录
中文核心期刊

蜂窝结构仿生策略及承载吸能机制研究进展

STUDY PROGRESS ON BIONIC STRATEGIES AND LOAD-BEARING AND ENERGY-ABSORBING MECHANISMS OF HONEYCOMB STRUCTURES

  • 摘要: 生物系统进化出的先进结构材料具备卓越防护功能, 可在复杂冲击环境中可靠、高效地保护生物躯体及器官. 基于此类机制设计的仿生蜂窝结构, 有效突破了传统结构“强度-韧性”权衡困境, 显著改善应力集中导致的承载力骤降问题, 并提升能量吸收平稳性. 本文系统综述二维蜂窝结构仿生策略研究进展, 深入解析典型仿生蜂窝结构设计案例的仿生特征与设计理念, 阐明其所蕴含的力学强化机制与吸能机理, 并同步对比评估了其关键性能参数(压溃力效率CFE、比强度SS及比吸能SEA)的优劣. 从仿生理念的角度将当前仿生策略归纳为五大创新方向: 仿特征策略、层级仿生策略、梯度仿生策略、仿生单元增强策略及仿功能性策略. 最后, 深入剖析了仿生蜂窝结构所面临的问题及未来发展方向, 涵盖复杂性与可制造性间的突出矛盾、材料与结构的最佳匹配性研究等. 本文可为蜂窝结构的仿生设计提供设计参考, 为开发轻量化-高强韧-高能效一体化吸能结构提供系统的理论框架与技术路线.

     

    Abstract: Advanced structural materials derived from biological systems exhibit exceptional protective capabilities, reliably safeguarding organisms and organs within complex impact environments. Bio-inspired honeycomb structures designed through such mechanisms have transcended the strength-toughness trade-off limitations inherent in traditional designs. These innovations mitigate the abrupt load-bearing capacity reductions caused by stress concentrations while enhancing energy absorption stability. This review systematically examines research advances in bionic strategies for two-dimensional honeycomb structures, explores the biomimetic characteristics and design principles of representative cases, delineates their underlying mechanical reinforcement and energy dissipation mechanisms, and critically evaluates key performance parameters—including crushing force efficiency (CFE), specific strength (SS), and specific energy absorption (SEA). From a biomimetic conceptual perspective, we consolidate current strategies into five primary design paradigms: feature-based imitation, hierarchical design, gradient bionic strategy, bionic unit enhancement strategy, and function-oriented strategy. Finally, we address persistent challenges confronting bio-inspired honeycombs—notably the inherent tension between structural complexity and manufacturability, alongside the optimization of material-structural synergy—while outlining future research trajectories. This work establishes a design paradigm for biomimetic honeycomb development and provides a systematic framework and technical roadmap for engineering lightweight, high-strength, high-efficiency energy-absorbing structures.

     

/

返回文章
返回