EI、Scopus 收录
中文核心期刊

磁场下近壁面小球绕流的流场及受力

FLOW FIELD AND FORCE FOR FLOW PAST A NEAR-WALL SPHERE UNDER A MAGNETIC FIELD

  • 摘要: 采用数值模拟探究不可压缩导电流体中绝缘小球和壁面在磁场作用下的三维流动特性. 重点分析雷诺数1 \leqslant Re \leqslant 100、相互作用数0 \leqslant N \leqslant 10以及球壁间距 0.5 < \alpha \leqslant 1.0 下小球的尾流流场演化规律和小球受力的影响机制, 其中N和 \alpha 分别表征磁场强度和球心与壁面之间的无量纲距离. 研究表明, 在当前参数范围内, 无磁场环境下存在3种基本流动模式: 小间距低雷诺数下的未分离流动、具有双驻点的分离流动, 以及间距增大后的单驻点分离流动. 随着磁场的增大, 未分离流动在磁场阻尼作用下流线沿磁场方向被拉直, 垂直磁场方向上的流动被抑制; 对于双驻点的尾流模态, 由于洛伦兹力作用于尾涡的位置不同使得分离涡先被抑制减小, 随后沿磁场被拉长. 强磁场下小球的阻力和升力均随N^1/2呈现线性变化, 以此为基础构建了磁场下球体所受的阻力和升力表达式. 该表达式由3个部分组成: 低雷诺数下基本解, 惯性修正部分以及磁场贡献的部分. 通过数值模拟验证了阻力和升力表达式的准确性, 结果表明理论预测与计算数据吻合良好, 最大误差分别为6.5%(阻力)和17.9%(升力).

     

    Abstract: The three-dimensional flow of an insulating sphere near a wall in an incompressible electrically conducting fluid under the influence of a magnetic field is investigated by direct numerical simulation method. The evolution of wake structure and force on sphere is analyzed under the influence of a magnetic field within a sphere-wall gap 0.5 < \alpha \leqslant 1.0 with respect to the Reynolds number 1 \leqslant Re \leqslant 100and the interaction number 0 \leqslant N \leqslant 10, where N and \alpha represent the magnetic field strength and the dimensionless distance between the sphere center and the wall, respectively. The study reveals that reducing the sphere-wall distance leads to the emergence of a new wake mode characterized by dual stagnation points. It is shown that within the current parameter range, three basic flow modes exist in the absence of a magnet field: unseparated flow at low Reynolds numbers with small spacing, separated flow with double stagnation points, and separated flow with a single stagnation point after the spacing is increased. As the magnetic field intensifies, the unseparated flow exhibits streamlines straightened along the magnetic field direction due to magnetic damping, while the flow perpendicular to the magnetic field is suppressed. For the wake mode with dual stagnation points, the Lorentz force acts at different positions on the trailing vortices, initially suppressing and reducing the separation vortices before elongating them along the magnetic field. Under a strong magnetic field, both the drag and lift force on the sphere vary linearly with N^1/2. Based on this, expressions for the drag and lift force on the sphere under a magnetic field are constructed. These expressions consist of three parts: the low-Reynolds-number solution, the inertial correction term, and the magnetic contribution. Numerical simulations validate the accuracy of the drag and lift expressions, showing good agreement between theoretical predictions and computational data, with maximum errors of 6.5% for drag and 17.9% for lift.

     

/

返回文章
返回