EI、Scopus 收录
中文核心期刊

气泡动力学研究进展

张阿漫, 李世民, 李帅, 刘云龙

张阿漫, 李世民, 李帅, 刘云龙. 气泡动力学研究进展. 力学学报, 2025, 57(1): 1-16. DOI: 10.6052/0459-1879-24-545
引用本文: 张阿漫, 李世民, 李帅, 刘云龙. 气泡动力学研究进展. 力学学报, 2025, 57(1): 1-16. DOI: 10.6052/0459-1879-24-545
Zhang A-Man, Li Shimin, Li Shuai, Liu Yunlong. Advancements in bubble dynamics research. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 1-16. DOI: 10.6052/0459-1879-24-545
Citation: Zhang A-Man, Li Shimin, Li Shuai, Liu Yunlong. Advancements in bubble dynamics research. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 1-16. DOI: 10.6052/0459-1879-24-545
张阿漫, 李世民, 李帅, 刘云龙. 气泡动力学研究进展. 力学学报, 2025, 57(1): 1-16. CSTR: 32045.14.0459-1879-24-545
引用本文: 张阿漫, 李世民, 李帅, 刘云龙. 气泡动力学研究进展. 力学学报, 2025, 57(1): 1-16. CSTR: 32045.14.0459-1879-24-545
Zhang A-Man, Li Shimin, Li Shuai, Liu Yunlong. Advancements in bubble dynamics research. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 1-16. CSTR: 32045.14.0459-1879-24-545
Citation: Zhang A-Man, Li Shimin, Li Shuai, Liu Yunlong. Advancements in bubble dynamics research. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 1-16. CSTR: 32045.14.0459-1879-24-545

气泡动力学研究进展

基金项目: 

国家自然科学基金(51925904)资助项目

详细信息
    通讯作者:

    张阿漫, 教授, 主要研究方向为气泡动力学、流固耦合动力学. E-mail: zhangaman@hrbeu.edu.cn

  • 中图分类号: O352, O359

ADVANCEMENTS IN BUBBLE DYNAMICS RESEARCH

  • 摘要: 只要有流体的地方, 就可能会产生气泡, 气泡是气体在液体中一种常见的呈现形式, 在自然界和工程界中广泛存在, 在船舶与海洋、先进制造、环境与化工、生命科学和医学等许多领域均有重要应用价值, 同时, 在水中结构抗爆和空蚀等很多领域气泡也是导致危害产生的根源, 因此, 气泡动力学是诸多领域共同关心的基础科学问题. 然而, 由于气泡动力学行为的复杂性, 涉及边界、多气泡、流场环境、流体可压缩性、黏性和表面张力等多物理因素和环境条件的显著影响, 迄今为止, 仍存在复杂条件下气泡动力学理论、气泡群相互作用、气液固耦合效应和气泡损伤及防护机制等难题亟待解决. 为此, 从气泡动力学的基本物理现象入手, 深入剖析了该领域所面临的挑战, 给出了存在的力学难题, 综述了气泡动力学理论、数值和实验技术的研究进展与最新动态, 通过对现有研究成果的系统梳理和详细分析, 最后总结了气泡动力学领域未来发展趋势, 并提出了潜在的研究方向和课题, 旨在为气泡动力学相关研究提供基础和依据.
    Abstract: In any location where fluids are present, there is an inherent possibility for the formation of bubbles, and these bubbles, a ubiquitous presence of gas within liquids, are pervasive in both natural and engineered settings. They play a crucial role across a wide spectrum of fields, from marine and ocean engineering to advanced manufacturing, environmental and chemical engineering, life sciences, and medicine. Bubbles are not only valuable in these areas but also the root cause of hazards in fields such as underwater structural blast resistance and cavitation. As such, bubble dynamics has emerged as a fundamental scientific concern shared by many disciplines. The complexity of bubble dynamic behavior, however, presents significant challenges, requiring intricate studies that span a multitude of physical factors and environmental conditions, including boundaries, multiple bubbles, flow-field environments, fluid compressibility, viscosity, and surface tension. To date, there are still many unresolved issues in bubble dynamics under complex conditions, such as the theoretical understanding of bubble dynamics, interactions within bubble clusters, gas-liquid-solid coupling effects, and mechanisms of bubble-induced damage and protection. This paper starts with the fundamental physical phenomena of bubble dynamics, providing an in-depth analysis of the challenges faced in the field and outlining the existing mechanical problems. It reviews the latest advancements in the theories, numerical methods, and experimental techniques in bubble dynamics. Through a systematic organization and detailed examination of current research findings, the paper concludes with an outlook on the future trends in bubble dynamics and suggests potential research directions and topics, aiming to lay a foundation and provide a reference for further studies in bubble dynamics. This comprehensive approach is intended to address the gaps in our knowledge and push the boundaries of what we understand about the intricate behavior of bubbles in various fluid environments, ultimately contributing to the advancement of scientific and technological innovation.
  • 气、液、固是自然界中物质3种最基本的状态, 气泡是气体在液体中一种常见的表现形式, 因此, 气泡广泛存在. 通常, 液体中的气体(气核)处于平衡状态, 当外界有气体或能量输入时, 例如水下爆炸和高压气枪等过程, 会在液体中形成气泡/空穴; 或者当液体的压力、温度等物理量发生变化时, 例如物体在水中高速运动、烧开水等过程, 液体中气核的平衡状态被打破, 从而形成空化气泡, 简称空泡. 气泡动力学蕴含着丰富的流体力学现象, Science期刊曾将气泡动力学行为归为8大奇幻有趣的流体现象之一. 气泡在船舶与海洋、航空航天、先进制造、机械、环境与化工、生命科学和医学等领域[1-7]均有重要应用价值, 例如在海洋领域, 海底火山喷发, 会产生巨型气泡, 直径可达几百米甚至更大[8]. 有报道称百慕大三角海里产生大量气泡导致船舶沉没, 这也是人们关心的问题[9]. 水下爆炸产生的米量级甚至更大的大尺度气泡, 如图1所示, 具有能量高, 频率低和作用时间长等特点, 它与舰船的一阶固有频率比较接近, 能够一次性使得舰船从中间折断, 使舰船一次性丧失生命力[10-17]. 深海内爆也是深海潜水器结构力学设计中必须考虑的重要因素[18-19]. 深海勘探高压气枪震源产生的米量级的大尺度气泡, 是气枪阵列设计的关键科学问题[20-23], 而且为了勘探更深更远的海底资源和保护海洋生物, 需研发更低频的新型气枪, 这时气泡动力学在新型低频气枪设计[24-25]中将发挥更大的作用.

    图  1  水下爆炸大尺度气泡产生的水冢现象
    Figure  1.  The water column phenomenon caused by large-scale underwater explosions bubbles

    空化气泡是海洋/水中航行器水动力学设计中经常遇到的问题, 这是由于空化气泡溃灭会对结构造成严重剥蚀, 并且会往外辐射噪声, 空化气泡溃灭产生的噪声也是水中航行器水动力学设计中要尽力避免的[26], 上浮气泡对水中航行器的隐身特性的影响也要重点考虑[27]. 同时, 空化气泡也是水力机械和推进器领域的重要研究课题[28-29], 是大坝等水利工程领域要避免发生的现象[30], 空化气泡群的耦合效应也是研究人员关心的难题[31-32]. 跨介质航行器在跨水空介质/砰击的时候会产生空化气泡或空穴, 如图2所示, 是制约跨介质航行器水动力学设计的关键因素[33-36], 超空泡技术也在水中航行器设计中发挥了重要作用[37]. 在海洋领域, 气泡声学问题也是研究人员十分关心的课题, 例如利用气泡改变流场的阻抗, 如图3所示, 从而改变声波的传播特性[38-39]. 近年来, 气泡破冰也在极地研究中发挥着重要作用, 如图4所示, 参考崔璞等[40-42]的研究工作. 随着科技的发展, 气泡减阻及气泡帷幕抗冲击等也日益受到重视, 在水中航行体的力学设计中越来越重要[43-45]. 大气和海洋的交换过程中气泡也发挥着重要作用[46], 这对海洋环境保护有重要意义.

    图  2  跨介质气泡动力学
    Figure  2.  Bubble dynamics in water entry/exit applications
    图  3  气泡帷幕抗冲击效果: (a) ~ (d)为气幕附近气泡运动过程, (e)为气幕一侧的测点压力
    Figure  3.  Anti-impact effect of bubble curtain: (a) ~ (d) show the bubble movement process near the bubble curtain and (e) shows the pressure at a measurement point on the side of the bubble curtain
    图  4  气泡破冰机制与规律[42]
    Figure  4.  Mechanism and laws of bubble ice-breaking[42]

    在航空航天领域, 火箭的液体发动机, 主要用液氢、液氮和液氧等作为燃料, 由于这些材料的饱和蒸汽压极低, 非常容易发生空化, 可能会导致事故的发生[47]. 水等液体用于超算领域的冷却散热, 会导致液体中产生气泡, 这在很多种类的动力装置里也有类似的现象[48-50]. 在先进制造领域, 气泡清洗/超声清洗/超声化学是重要的研究分支[51-52], 喷墨打印设计中利用气泡射流进行精确打印也是工业部门比较关心的课题[53-54]. 浸没光刻机中的液滴也可能产生空化气泡, 是该领域前沿科学问题[55]. 液滴中的气泡, 或者多相流液滴中气泡动力学行为有十分有趣的流体力学现象[56-59], 引发了很多研究人员的研究兴趣, 揭示了以前没有被发现的有趣的物理现象, 这在食品工程中的乳化、污水处理等领域有重要应用[60]. 在工程热物理领域由于热效应产生的气泡非常重要[61-62], 在现代科技中气泡流、纳米气泡、微米气泡、气泡催化和电解等也具有重要的研究意义[63-66]. 激光气泡、放电气泡等已成为气泡动力学研究的重要手段[67-72], 并在工程应用中越来越发挥着重要作用.

    在生命科学和医学领域, 有学者说气泡为地球生命起步提供了重要的推动力, 在生命起步中发挥了重要作用[73-74], 可能宇宙也是一个大气泡. 在医学领域, 气泡有超声碎石、气泡输药、基因剪切、超声诊断和超声造影剂等诸多应用[6, 75-83], 如图5所示, 气泡用于血管堵塞治疗也逐渐变得重要[84], 超声气泡在临床医学中发挥了重要作用[85-88]. 气泡还在无针注射领域有重要意义, 在传统注射领域要避免气泡产生[89-91]. 在其他领域, 例如荷叶等材料表面的疏水特性是由于存在纳米尺度的气泡, 为气泡减阻提供了技术基础[44], 下雨的时候液滴落地会产生空化现象等[92-93]. 声致发光领域的气泡动力学研究具有十分重要的科学意义, 可能为将来的能源及声化学领域带来新的思路[94-98]. 气泡推进技术在新型领域具有十分广阔的应用前景[99-101]. 枪虾制造高速水射流, 产生空化气泡并利用气泡捕猎, 鲸鱼也利用气泡改变周围水的声场用于捕猎[102-103], 以及软物质中的空化气泡动力学行为[104-105]和核物理中的气泡[106-107]等, 这些都给予我们研究气泡动力学问题提供了思路. 流体物理领域关心的莱顿弗罗斯特效应等问题也和气泡有密切的关系[108]. 总之, 气泡动力学作为基础学科流体力学的重要分支, 在自然科学界和工程界扮演着重要角色, 仍存在许多有趣的物理现象和机制亟待被揭示.

    图  5  超声气泡及其在医学上的应用
    Figure  5.  Ultrasonic bubbles and their medical applications

    气泡运动过程涉及的物理力学现象是十分丰富的[109-113], 如果仅受重力场作用, 气泡一般表现为上浮、脉动和射流等特征; 如果气泡仅受到刚性壁面作用, 由于受到的Bjerknes力, 气泡可能会被壁面吸引, 产生指向壁面的射流, 距离壁面较近时, 气泡可能会破碎; 如果气泡仅受到自由液面作用, 气泡可能会被自由液面排斥, 产生背离自由液面的射流, 自由液面产生水冢现象, 甚至会破碎[114-116], 这个物理现象比较复杂, 例如水下爆炸气泡在水面形成的巨型水柱现象, 如图1所示; 在弹性边界附近, 气泡可能表现出更为奇特的现象, 例如发展成为蘑菇状气泡等[117]. 而实际上, 气泡附近常常存在多种边界, 并且气泡同时受到多个力的作用, 使得气泡的动力学行为变得十分难以预测, 如图6所示, 例如多个气泡会融合, 单个气泡也会出现撕裂等情况. 在液体中如果流场压力降低, 或者温度升高, 微小的气核就会变成宏观的气泡, 从而出现梢涡空化及云空化及片空化等现象[118-119], 这里呈现出多气泡或者气泡群效应, 这些过程中存在显著的传热传质等特性; 还有在一些特殊的边界附近, 例如方形边界附近的气泡、不相溶多相流体中的气泡等[120-122], 此时气泡动力学特性则更为复杂.

    图  6  双气泡耦合效应
    Figure  6.  The coupling effect of bubble pairs

    由于气泡的例子实在太多, 如图7所示, 在这里不可能完全列举完成, 然而, 无论何种环境下的气泡动力学行为, 气泡主要呈现以下三个特征: 一是由于气泡存在内外压差, 使得气泡沿径向膨胀和收缩, 称之为气泡脉动; 二是由于浮力或者存在边界效应, 气泡会呈现迁移现象; 三是由于气泡表面背景压力分布不均匀, 气泡会产生射流现象. 而流场的可压缩性、黏性和表面张力等流体性质一般情况下是始终存在的, 对于有些气泡还存在显著的相变和传热传质等问题[123-124], 这些都加剧了气泡动力学的复杂性. 早在欧洲文艺复兴时期, 达芬奇就开始研究气泡[125], 经过研究人员数百年的不懈努力, 人们对气泡有了更深刻的认识, 为了有助于人们更好地研究气泡动力学问题, 针对气泡难题, 下面从理论、数值和试验等方面给予综述气泡动力学研究现状与发展动态.

    图  7  不同条件下的气泡动力学特性[126-127], (a) ~ (c)分别为自由场、自由面和壁面条件下的气泡
    Figure  7.  Bubble dynamics characteristics under different conditions [126-127]. (a) ~ (c) represent bubbles under free-field, free-surface, and wall conditions, respectively

    关于气泡理论研究, 早在1859年, Besant[128]就研究过气泡动力学理论问题, 给出了气泡溃灭时间的数学描述, 1917年 Rayleigh[129]在此基础上深化了气泡动力学理论研究, 1924年Lamb[130]、1949年Plesset[131]基于Rayleigh的推导过程, 建立了著名的不可压缩流场中气泡脉动方程, 也就是Rayleigh-Plesset方程[132](RP方程), 为气泡理论研究奠定了扎实的基础, 如式(1)所示

    $$ R\ddot R + \frac{3}{2}{\dot R^2} = \frac{1}{\rho }\left( {{P_b} - {P_\infty }} \right) $$ (1)

    其中, R为气泡半径, $\dot R$和$\ddot R$分别为R的一阶和二阶时间导数, ${P_b}$为气泡表面液体压力, $ {P}_{\infty } $为无穷远处静水压, $\rho $为气泡周围的流体密度.

    此后, Noltingk等[133]和Poritsky[134]对RP方程进行了修正, 计入黏性和表面张力的影响. 然而, 实际上, 在气泡运动速度比较快的情况下, 流场的可压缩性对气泡动力学行为有很大的影响, 尤其是气泡生成和坍塌的阶段, 流场的可压缩性影响更大. 在1956年和1980年, Keller等[135-136]建立了可压缩流场中的气泡脉动方程

    $$ \left( {1 - \frac{{\dot R}}{C}} \right)R\ddot R + \frac{3}{2}\left( {1 - \frac{{\dot R}}{{3C}}} \right){\dot R^2} = \left( {1 + \frac{{\dot R}}{C}} \right)H + \frac{R}{C}\dot H $$ (2)

    其中, C为水中声速, H为气泡表面与背景流场的焓差, $\dot H$为H的时间导数. 类似的工作还有Gilmore[137]也建立了一个可压缩流场中的气泡动力学方程, 这两个方程有细微的差别, 但是在1987年Prosperetti等[138]的研究工作中表明, Keller方程有更好的预测精度, 同时Prosperetti建立了基于摄动法的气泡动力学方程. 关于可压缩流场中气泡动力学的理论研究, 还有Herring[139]、Trilling[140]、Hickling等[141]和Flynn[142]也做出了重要贡献, 为可压缩性流场气泡动力学理论研究奠定了基础.

    除可压缩性外, 气泡内外流场的相变和温度效应等因素也对气泡动力学产生较大影响, 也就是说传热传质效应在很多情况下需要考虑, 参考Fujikawa等[124]和Yasui等[143-144]的工作, 通过修正气泡表面的液体速度并引入范德瓦尔斯方程给出了计及传质传热影响的气泡理论模型, 并将其应用到了空化气泡和超声空泡等气泡动力学特性的预测中.

    由于自然界中气泡不是孤立的, 其力学行为会受到重力、边界效应、多气泡和流场环境等许多条件和因素的严重影响, 上述因素会导致气泡除了原地脉动, 还存在可压缩迁移现象, 如图8所示, 这些复杂的因素导致经典理论在预测气泡动力学特性时存在较大的偏差. 为了计入气泡运动的迁移效应, 1970年, Hicks[145]在RP方程的基础上加上了${v^2}/4$项, Ma等[146]在Keller方程上加了${v^2}/4$项, 然而这些工作都只是考虑不可压缩迁移项, 而实际上, 气泡脉动、迁移与流体可压缩性、黏性、表面张力等是耦合在一起的. 值得一提的是2002年Geers等[147]针对水下爆炸气泡, 建立了可压缩流场中气泡脉动和迁移方程组, 但是该方程组难以推广到其他气泡或者多气泡相互作用的情形.

    图  8  近边界气泡迁移效应
    Figure  8.  Bubble migration near boundaries

    上述气泡动力学理论没有同时考虑流场可压缩性、相变和迁移效应, 为此, Zhang等[148-149]从最基本的数学原理出发, 构造了波动方程的移动奇点基本解, 同时计入了气泡可压缩脉动、迁移、相变、流场环境、黏性和表面张力等因素, 建立了具有统一形式的气泡动力学方程

    $$ \left( {\frac{{C - \dot R}}{R} + \frac{{\mathrm{d}}}{{{\mathrm{d}}t}}} \right)\left( {\frac{R}{{C - \dot R}}\frac{{{\mathrm{d}}F}}{{{\mathrm{d}}t}}} \right) + \frac{{\mathrm{d}}}{{{\mathrm{d}}t}}\left( {\frac{{R\dot m}}{\rho }} \right) = 2R{\dot R^2} + {R^2}\ddot R $$ (3)

    其中, $\dot m$为净蒸发率, $ {{{\mathrm{d}}F} \mathord{\left/ {\vphantom {{{\mathrm{d}}F} {{\mathrm{d}}t}}} \right. } {{\mathrm{d}}t}} $取决于具体的物理因素和环境条件, $ \dfrac{{\mathrm{d}}F} {{\mathrm{d}}t} = \dfrac{1}{2}{\left( {\dot R - \dfrac{\dot m} {\rho} } \right)^2} + \dfrac{1}{4}{v^2} + H $, v为气泡迁移速度. 方程左端第一项代表气泡脉动、迁移及环境耦合力, 左端第二项为相变源项, 右端项代表气泡的体积加速度. 该方程具有简洁的数学形式和明确的物理意义, 并具有良好的拓展性, 将不同源/尺度/环境下的气泡力学行为统一到方程中, 还可以退化到RP、Keller和Gilmore等经典方程, 破解了边界效应和相变等条件下气泡理论预测难题, 发现了气泡之间复杂波系相互作用及能量传递新机制, 以及相变和可压缩性对气泡动力学行为的影响规律, 为气泡动力学相关研究提供了新的理论手段. 对于多气泡或气泡群理论建模问题, 通过势流分析可以获得多气泡相互作用下的流场压力和迁移等物理量[149-151], 联立多个单气泡方程即可求解气泡之间的耦合效应, 依据镜像原理该方法也可以推广到边界附近气泡动力学行为的理论分析之中.

    此外, Shima等[152-153]和Plesset等[154]也对非球状气泡的理论解做出了贡献, 但是由于气泡变形, 使得气泡动力学的数学表达变得异常复杂, 关于非球状气泡或者曲面附近气泡动力学特性的理论求解还需深入研究. 此外, 对于环状气泡方程, 可参考Chahine等[155]的工作, 动力学效应不明显的气泡理论则有EP方程等[156], 但是由于气泡的种类很多, 不同条件下的气泡物理力学行为也异常复杂, 所以非球形气泡理论、曲面边界附近气泡理论和计入内部复杂因素的气泡理论等研究尚需不断发展.

    理论研究很难解决气泡射流等大变形问题, 然而随着数值模拟技术的快速发展, 人们逐渐采用数值模拟方法对气泡动力学进行了细致的研究, 早期人们采用边界元理论和方法模拟气泡动力学特性, 取得了巨大的成功, 例如Blake等[157-161]的工作, 在自由场或者中远场等条件下气泡模拟结果与实验结果吻合良好. 前期的边界元方法(BEM)主要用于模拟气泡射流之前的阶段[162-163], 气泡产生射流之后, 穿透气泡表面形成环状气泡, 气泡由单连通域变成多连通域, 如图9所示, 且流场速度势由单值函数变为多值函数, 这给气泡模拟带来了很大挑战, Wang等[163]、Zhang等[164]和Best[165]在这方面做了大量的工作, 提出了涡线、涡面和涡环模型, 比较成功地解决了这一问题. 但是如果气泡距离边界太近, 或者由于气泡变形之后的拓扑结构变得异常复杂时, 边界元模拟则很难给出令人满意的结果, 即使很多学者在这方面做了很多创新和改进, 例如多涡环模型和网格优化方法等[166-167], 在气泡计算过程网格极度扭曲之后, 会导致边界元方法难以往下计算. 尽管如此, 由于边界元方法的理论性较强, 其在气泡动力学模拟中发挥了重要作用.

    图  9  气泡动力学边界元数值模拟
    Figure  9.  Boundary element numerical simulation for bubble dynamics

    在近场气泡动力学或者气泡运动细节模拟中, 有限差分、有限元、有限体积、BEM、无网格SPH方法和格子玻尔兹曼方法(LBM)等方法在气泡动力学模拟中扮演了重要的角色[168-178], 值得一提的是, 早在20世纪, Asghar等[179]以及Nakajima等[180]学者就开展了气泡动力学有限差分/有限元数值模拟研究. 有网格欧拉有限元方法(EFEM)在气泡动力学模拟方面发展得很快, 在模拟气泡运动细节方面有很强的优势, 如图10所示, 参考Liu等[181-182]的工作, 尤其为水下爆炸气泡、高压气枪气泡和空化气泡等水中高压脉动气泡模拟提供了有力的手段. 有限体积的方法也是气泡动力学数值模拟方面的重要组成部分, 高阶的方法可能是气泡动力学模拟未来发展的趋势, 可参考文献[183-186]等的工作, 气泡运动过程伴随的流动现象具有速度高和强间断的强非线性特征, 发展高精度数值算法是非常有必要的.

    图  10  气泡在水面附近破碎数值模拟
    Figure  10.  Numerical simulation of bubble collapse near the free surface

    无网格SPH方法在气泡动力学模拟方面取得了长足的进展, 参考张阿漫等[27, 187-190]的工作, 发展了TENO-SPH、粒子体积自适应算法(VAS)、粒子重生成算法(PRT)和粒子位移技术(PST )等数值方法, 在常压气泡和高压气泡模拟方面都有不错的结果. 近年来, 为了模拟复杂条件下气泡与水中结构之间的流固耦合效应, 耦合欧拉/拉格朗日算法展现出了很大的优势[191-194]. 此外, 物理嵌入的人工智能/机器学习算法也逐渐成为新的模拟手段[195-196], 这些为气泡动力学的数值模拟提供了新的途径. 对于多气泡或者气泡群的数值模拟, 耦合的拉格朗日/欧拉方法已成为重要的手段[197-200], 如图11所示, 已在多尺度空化模拟领域取得很好的效果. 然而由于气泡的复杂性, 尤其是气泡群、气泡流之间的相互作用、远场气泡模拟、跨尺度气泡模拟和气液固耦合模拟等问题可能是未来数值计算发展的方向.

    图  11  多尺度空化气泡数值模拟
    Figure  11.  Numerical simulation of multi-scale cavitation bubbles

    实验研究是气泡动力学研究中的重要组成部分, 早在1966年, Benjamin等[201]就开展了气泡动力学实验, 发现了脉动、射流等力学特性, 获得了宝贵的实验数据, 为后续理论和数值研究提供了良好基础. 对于气泡动力学实验研究, 有很多实验方法, 典型的方法包括激光气泡[202-208]、放电气泡[209-214]、水下爆炸气泡[215-217]和气枪气泡[218-220]等. 然而由于气泡动力学行为与重力及水深等条件密切相关, 其相似关系在传统的实验条件下难以满足[221-224]. 关于小于米量级的气泡, 人们通常用激光和放电等方式生成气泡以研究空化气泡的动力学特性[67, 225], 如图12所示. 为揭示复杂条件下的气泡动力学机理, 人们开展了丰富的多气泡实验研究[32, 226-228], 包括气泡群相互作用、脉动气泡与常压气泡耦合以及多气泡与结构耦合等, 发现并总结了许多有趣的物理现象和力学机制, 或者通过高速水洞研究空化气泡流动力学规律[229-232], 这些都为气泡动力学实验奠定了坚实的基础. 随着实验方法和技术的不断发展, 通过实验能够发现的物理规律越发精细, 能够发现一些极端条件下气泡的力学行为, 例如Fan等[183]发现了超过1000 m/s的射流速度; 再如Cui等[42]发现了4种气泡破冰模式, 并明确了气泡破冰机理与规律; Han等[120]和Qin等[194]总结了多相流中气泡的射流特性, 拓展了对气泡动力学领域的新认识, 为气泡动力学的发展提供了新思路.

    图  12  放电气泡动力学特性
    Figure  12.  Dynamics characteristics of electrical discharge bubbles

    关于米量级及以上的大尺度气泡, 例如水下爆炸气泡及深海勘探气泡等是海洋领域关心的重要课题, 但是产生大尺度气泡并不容易, 一般通过TNT、高压气枪等方式形成米量级的气泡[24, 233-237], 对气泡特征和流场载荷进行系统研究, 以发现大尺度气泡动力学的一般规律, 为气泡理论和数值模拟提供依据. 对于深海勘探高压气枪气泡的研究公开发表的文献不太多, 典型的研究可参考Ziolkowski等[238-239]和Liu等[240]相关学者的工作, 他们开展了气枪气泡理论研究和实验研究, 获得了气泡脉动产生的压力子波特性, 为高压气枪气泡研究提供了有效的实验数据. 对于水下爆炸气泡, 采用小当量的TNT在水箱中产生米量级的气泡[126, 241-244], 如图13所示, 以便研究不同边界和初始条件下的气泡动力学特性及其相关的流固耦合效应, 为水下爆炸毁伤与防护研究提供参考. 对于超大尺度的气泡直接观测的手段还不多, 例如数十千克或者百千克以上的水下爆炸气泡动态特性公开发表的文献十分罕见[217], 还主要依靠压力传感器等手段获得水下爆炸气泡产生的压力载荷, 间接获得气泡半径和周期等数据. 从广义的角度来说, 空化气泡、高压气枪气泡和水下爆炸气泡等在极短的时间内迅速膨胀或者坍塌的物理力学过程均可认作水下爆炸, 因为在研究动力学特性的时候, 均要计及气泡外流场的可压缩性, 可以用相同的数学方程来描述, 这拓展了水下爆炸力学学科的概念, 为水下爆炸力学学科长远发展提供了基础.

    图  13  多气泡之间的相互作用
    Figure  13.  Interaction between multiple bubbles

    气泡动力学是涉及物理、力学、声学、化学和工程等多个领域的交叉学科, 是多个领域共同关心的重要研究课题, 研究人员在气泡动力学理论、数值和试验等方面取得了长足的进展, 取得了丰富的研究成果, 气泡动力学已在自然科学和工程领域发挥着独特的重要作用, 在未来, 无论是微观气泡、宏观气泡、还是超大尺度气泡均将扮演更重要的角色, 但是由于气泡动力学行为的复杂性, 仍存在艰涩的力学难题有待被攻克, 主要包括如下.

    (1)复杂条件下的气泡动力学理论、数值模拟与实验技术;

    (2)气泡动力学迁移方程的解析推导;

    (3)多相流中的气泡动力学特性;

    (4)气泡群/气泡流动力学机理与规律;

    (5)超大气泡动力学理论与应用;

    (6)超近边界气泡动力学机理;

    (7)气泡与水中结构相互作用过程中的气液固耦合动力学规律;

    (8)气泡高效能量传递、毁伤与防护机制;

    (9)高速跨介质过程中的气泡动力学理论与规律;

    (10)太空、火箭发射、光刻机和深海爆炸等极端条件下的气泡动力学行为;

    (11)极端跨尺度气泡动力学机制;

    (12)微小气核变成宏观气泡, 再变成片气泡等过程的机制与规律尚需被揭示.

  • 图  1   水下爆炸大尺度气泡产生的水冢现象

    Figure  1.   The water column phenomenon caused by large-scale underwater explosions bubbles

    图  2   跨介质气泡动力学

    Figure  2.   Bubble dynamics in water entry/exit applications

    图  3   气泡帷幕抗冲击效果: (a) ~ (d)为气幕附近气泡运动过程, (e)为气幕一侧的测点压力

    Figure  3.   Anti-impact effect of bubble curtain: (a) ~ (d) show the bubble movement process near the bubble curtain and (e) shows the pressure at a measurement point on the side of the bubble curtain

    图  4   气泡破冰机制与规律[42]

    Figure  4.   Mechanism and laws of bubble ice-breaking[42]

    图  5   超声气泡及其在医学上的应用

    Figure  5.   Ultrasonic bubbles and their medical applications

    图  6   双气泡耦合效应

    Figure  6.   The coupling effect of bubble pairs

    图  7   不同条件下的气泡动力学特性[126-127], (a) ~ (c)分别为自由场、自由面和壁面条件下的气泡

    Figure  7.   Bubble dynamics characteristics under different conditions [126-127]. (a) ~ (c) represent bubbles under free-field, free-surface, and wall conditions, respectively

    图  8   近边界气泡迁移效应

    Figure  8.   Bubble migration near boundaries

    图  9   气泡动力学边界元数值模拟

    Figure  9.   Boundary element numerical simulation for bubble dynamics

    图  10   气泡在水面附近破碎数值模拟

    Figure  10.   Numerical simulation of bubble collapse near the free surface

    图  11   多尺度空化气泡数值模拟

    Figure  11.   Numerical simulation of multi-scale cavitation bubbles

    图  12   放电气泡动力学特性

    Figure  12.   Dynamics characteristics of electrical discharge bubbles

    图  13   多气泡之间的相互作用

    Figure  13.   Interaction between multiple bubbles

  • [1]

    Van Gils DPM, Narezo Guzman D, Sun C, et al. The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow. Journal of Fluid Mechanics, 2013, 722: 317-347 doi: 10.1017/jfm.2013.96

    [2]

    Gannon L. Simulation of underwater explosions in close-proximity to a submerged cylinder and a free-surface or rigid boundary. Journal of Fluids and Structures, 2019, 87: 189-205 doi: 10.1016/j.jfluidstructs.2019.03.019

    [3]

    Amano R, Alkhalidi A, Miletta B, et al. Study of air bubble creation for aerospace applications//Proceedings of the 9th Annual International Energy Conversion Engineering Conference, 2011

    [4]

    Rodríguez-Rodríguez J, Sevilla A, Martínez-Bazán C, et al. Generation of microbubbles with applications to industry and medicine. Annual Review of Fluid Mechanics, 2015, 47(1): 405-429 doi: 10.1146/annurev-fluid-010814-014658

    [5]

    Chong WY, Cox C, Secker TJ, et al. Improving livestock feed safety and infection prevention: Removal of bacterial contaminants from hay using cold water, bubbles and ultrasound. Ultrasonics Sonochemistry, 2021, 71: 105372 doi: 10.1016/j.ultsonch.2020.105372

    [6]

    Omata D, Munakata L, Kageyama S, et al. Ultrasound image-guided gene delivery using three-dimensional diagnostic ultrasound and lipid-based microbubbles. Journal of Drug Targeting, 2021, 30(2): 200-207

    [7]

    Chemat F, Zill EH, Khan MK. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 2011, 18(4): 813-835 doi: 10.1016/j.ultsonch.2010.11.023

    [8]

    Lyons JJ, Haney MM, Fee D, et al. Infrasound from giant bubbles during explosive submarine eruptions. Nature Geoscience, 2019, 12(11): 952-958 doi: 10.1038/s41561-019-0461-0

    [9]

    Hueschen MA. Can bubbles sink ships? American Journal of Physics, 2010, 78(2): 139-141

    [10]

    Liu YL, Zhang AM, Tian ZL, et al. Numerical investigation on global responses of surface ship subjected to underwater explosion in waves. Ocean Engineering, 2018, 161: 277-290 doi: 10.1016/j.oceaneng.2018.05.013

    [11]

    Zhang Z, Li H, Zhang J, et al. Bubble motion and jet load near elastic-plastic structure under deep-water explosion. Ocean Engineering, 2024, 294: 116750 doi: 10.1016/j.oceaneng.2024.116750

    [12]

    Nguyen VT, Phan TH, Duy TN, et al. Numerical modeling for compressible two-phase flows and application to near-field underwater explosions. Computers & Fluids, 2021, 215: 104805

    [13]

    Li SM, Liu XB, Tang H. Multi-cycle dynamics of underwater explosion bubbles: An experimental investigation. Physics of Fluids, 2024, 36(9): 093309 doi: 10.1063/5.0224177

    [14]

    Gannon L. Submerged aluminum cylinder response to close-proximity underwater explosions—A comparison of experiment and simulation. International Journal of Impact Engineering, 2019, 133: 103339 doi: 10.1016/j.ijimpeng.2019.103339

    [15]

    Wang S, Gui Q, Zhang J, et al. Theoretical and experimental study of bubble dynamics in underwater explosions. Physics of Fluids, 2021, 33(12): 126113 doi: 10.1063/5.0072277

    [16]

    Liu NN, Zhang AM, Cui P, et al. Interaction of two out-of-phase underwater explosion bubbles. Physics of Fluids, 2021, 33: 106103 doi: 10.1063/5.0064164

    [17] 伍星星, 刘建湖, 汪俊等. 舷侧近距离爆炸下舱段模型毁伤试验研究. 爆炸与冲击, 2020, 40(11): 76-87 (Wu Xingxing, Liu Jianhu, Wang Jun, et al. Experimental research on damaging characteristics of cabin model attacking from shipboard direction under close-in underwater explosion. Explosion And Shock Waves, 2020, 40(11): 76-87 (in Chinese)

    Wu Xingxing, Liu Jianhu, Wang Jun, et al. Experimental research on damaging characteristics of cabin model attacking from shipboard direction under close-in underwater explosion. Explosion And Shock Waves, 2020, 40(11): 76-87 (in Chinese)

    [18]

    Turner SE. Underwater implosion of glass spheres. Journal of the Acoustical Society of America, 2007, 121(2): 844-852 doi: 10.1121/1.2404921

    [19]

    Sun S, Chen F, Zhao M. Numerical simulation and analysis of the underwater implosion of spherical hollow ceramic pressure hulls in 11000 m depth. Journal of Ocean Engineering and Science, 2023, 8(2): 181-195 doi: 10.1016/j.joes.2022.01.002

    [20]

    Ziolkowski A. Measurement of air-gun bubble oscillations. Geophysics, 1998, 63(6): 1845-2154 doi: 10.1190/1.1444476

    [21]

    Babak K, Martin L. Acoustically induced cavity cloud generated by air-gun arrays-comparing video recordings and acoustic data to modeling. The Journal of the Acoustical Society of America, 2018, 143(6): 3383-3393 doi: 10.1121/1.5040490

    [22] 宁亦池, 张帅, 邱永成等. 低频高压大容量气枪气泡压力子波特性研究. 中国科学: 物理学 力学 天文学, 2024, 54(12): 167-184 (Ning Yichi, Zhang Shuai, Qiu Yongcheng, et al. Study on the pressure wave characteristics of bubbles in low frequency, high pressure, and large capacity air guns. Scientia Sinica: Physica, Mechanica & Astronomica, 2024, 54(12): 167-184 (in Chinese)

    Ning Yichi, Zhang Shuai, Qiu Yongcheng, et al. Study on the pressure wave characteristics of bubbles in low frequency, high pressure, and large capacity air guns. Scientia Sinica: Physica, Mechanica & Astronomica, 2024, 54(12): 167-184 (in Chinese)

    [23] 叶亚龙, 李艳青, 张阿漫. 基于势流理论的气枪气泡远场压力子波特性研究. 物理学报, 2014, 63(5): 273-282 (Ye Yalong, Li Yanqing, Zhang Aman. Study of far-field pressure wavelet of air-gun bubble based on potential flow theory. Acta Physica Sinica, 2014, 63(5): 273-282 (in Chinese)

    Ye Yalong, Li Yanqing, Zhang Aman. Study of far-field pressure wavelet of air-gun bubble based on potential flow theory. Acta Physica Sinica, 2014, 63(5): 273-282 (in Chinese)

    [24]

    Li S, Meer DVD, Zhang AM, et al. Modelling large scale airgun-bubble dynamics with highly non-spherical features. International Journal of Multiphase Flow, 2020, 122: 103143 doi: 10.1016/j.ijmultiphaseflow.2019.103143

    [25]

    Zhang S, Khoo BC, Zhang AM. Study of three-dimensional air gun bubble pulsation and the surrounding fluid pressure with finite volume method. Ocean Engineering, 2021, 221: 108500 doi: 10.1016/j.oceaneng.2020.108500

    [26]

    Jeong S, Hong S, Song J, et al. Numerical method to determine the cavitation inception speed of a submarine propeller based on the noise obtained from bubble dynamics. Ocean Engineering, 2022, 245: 110464 doi: 10.1016/j.oceaneng.2021.110464

    [27]

    Zhang AM, Sun P, Ming F. An SPH modeling of bubble rising and coalescing in three dimensions. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 189-209 doi: 10.1016/j.cma.2015.05.014

    [28]

    Yusvika M, Prabowo AR, Tjahjana DDDP, et al. Cavitation prediction of ship propeller based on temperature and fluid properties of water. Journal of Marine Science and Engineering, 2020, 8(6): 465 doi: 10.3390/jmse8060465

    [29]

    Terwisga TV, Wijngaarden EV, Bosschers J. Achievements and challenges in cavitation research on ship propellers. International Shipbuilding Progress, 2007, 54: 2-3

    [30]

    Aminoroayaie YO, Mousavi SH, Kavianpour MR, et al. Hydrodynamic performance and cavitation analysis in bottom outlets of dam using CFD modelling. Advances in Civil Engineering, 2021, 2021: 1-14

    [31]

    Grandjean H, Jacques N, Zaleski S. Shock propagation in liquids containing bubbly clusters: A continuum approach. Journal of Fluid Mechanics, 2012, 701: 304-332 doi: 10.1017/jfm.2012.159

    [32]

    Bremond N, Arora M, Ohl CD, et al. Controlled multibubble surface cavitation. Physical Review Letters, 2006, 96(22): 224501 doi: 10.1103/PhysRevLett.96.224501

    [33]

    Li SM, Zhang AM, Cui P, et al. Vertically neutral collapse of a pulsating bubble at the corner of a free surface and a rigid wall. Journal of Fluid Mechanics, 2023, 962: A28 doi: 10.1017/jfm.2023.292

    [34]

    Truscott TT, Epps BP, Belden J. Water entry of projectiles. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378 doi: 10.1146/annurev-fluid-011212-140753

    [35]

    Del Buono A, Bernardini G, Tassin A, et al. Water entry and exit of 2D and axisymmetric bodies. Journal of Fluids and Structures, 2021, 103: 103269 doi: 10.1016/j.jfluidstructs.2021.103269

    [36]

    Wang Y, Huang C, Fang X, et al. On the internal collapse phenomenon at the closure of cavitation bubbles in a deceleration process of underwater vertical launching. Applied Ocean Research, 2016, 56: 157-165 doi: 10.1016/j.apor.2016.02.001

    [37]

    Weiland C, Vlachos PP. Time-scale for critical growth of partial and supercavitation development over impulsively translating projectiles. International Journal of Multiphase Flow, 2012, 38(1): 73-86 doi: 10.1016/j.ijmultiphaseflow.2011.08.012

    [38]

    Bacot A, Frank D, Linden PF. Bubble curtains used as barriers across horizontal density stratifications. Journal of Fluid Mechanics, 2022, 941: A1 doi: 10.1017/jfm.2022.142

    [39] 司剑峰, 钟冬望, 李雷斌. 基于气泡形态影响的水下气幕对冲击波衰减效果分析. 爆炸与冲击, 2021, 41(7): 71-79 (Si Jianfeng, Zhong Dongwang, Li Leibin. Analysis of underwater shock wave attenuation by air bubble curtain based on bubble shape. Explosion And Shock Waves, 2021, 41(7): 71-79 (in Chinese)

    Si Jianfeng, Zhong Dongwang, Li Leibin. Analysis of underwater shock wave attenuation by air bubble curtain based on bubble shape. Explosion And Shock Waves, 2021, 41(7): 71-79 (in Chinese)

    [40]

    Cui P, Zhang AM, Wang SP. Shock wave emission and ice breaking effect of multiple interacting bubbles. Ocean Engineering, 2021, 234: 109175

    [41]

    Cui P, Zhang AM, Wang SP, et al. Experimental study on interaction, shock wave emission and ice breaking of two collapsing bubbles. Journal of Fluid Mechanics, 2020, 897: A25 doi: 10.1017/jfm.2020.400

    [42]

    Cui P, Zhang AM, Wang SP, et al. Ice breaking by a collapsing bubble. Journal of Fluid Mechanics, 2018, 841: 287-309 doi: 10.1017/jfm.2018.63

    [43]

    Ceccio SL. Friction drag reduction of external flows with bubble and gas injection. Annual Review of Fluid Mechanics, 2009, 42: 183-203

    [44]

    Hu H, Wen J, Bao L, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips. Science Advances, 2017, 3(9): e1603288

    [45]

    Feng X, Zhang B. Applications of bubble curtains in marine oil spill containment: Hydrodynamic characteristics, applications, and future perspectives. Marine Pollution Bulletin, 2023, 194: 115371 doi: 10.1016/j.marpolbul.2023.115371

    [46]

    Deike L. Mass transfer at the ocean-atmosphere interface: the role of wave breaking, droplets, and bubbles. Annual Review of Fluid Mechanics, 2022, 54(1): 191-224 doi: 10.1146/annurev-fluid-030121-014132

    [47]

    Chen T, Chen H, Liang W, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition. International Journal of Heat and Mass Transfer, 2019, 132: 618-630 doi: 10.1016/j.ijheatmasstransfer.2018.11.157

    [48]

    Kikuchi S, Matsuoka S, Yoshimura T, et al. Effect of natural aging by multifunction cavitation on plane bending fatigue behaviour of heat-treatable Al-Si7Mg aluminum alloys and its fatigue strength estimation. International Journal of Fatigue, 2024, 185: 108352 doi: 10.1016/j.ijfatigue.2024.108352

    [49]

    Chen FJ, Yao C, Yang ZG. Failure analysis on abnormal wall thinning of heat-transfer titanium tubes of condensers in nuclear power plant Part II: Erosion and cavitation corrosion. Engineering Failure Analysis, 2014, 37: 42-52 doi: 10.1016/j.engfailanal.2013.11.002

    [50]

    Zhou DW, Liu DY, Hu XG, et al. Effect of acoustic cavitation on boiling heat transfer. Experimental Thermal and Fluid Science, 2002, 26: 931-938 doi: 10.1016/S0894-1777(02)00201-7

    [51]

    Reuter F, Mettin R. Mechanisms of single bubble cleaning. Ultrasonics Sonochemistry, 2016, 29: 550-562 doi: 10.1016/j.ultsonch.2015.06.017

    [52]

    Chahine GL, Kapahi A, Choi JK, et al. Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrasonics Sonochemistry, 2016, 29: 528-549 doi: 10.1016/j.ultsonch.2015.04.026

    [53]

    Lohse D. Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54(1): 349-382 doi: 10.1146/annurev-fluid-022321-114001

    [54]

    Turkoz E, Perazzo A, Kim H, et al. Impulsively induced jets from viscoelastic films for high-resolution printing. Physical Review Letters, 2018, 120(7): 074501 doi: 10.1103/PhysRevLett.120.074501

    [55]

    Banine VY, Koshelev KN, Swinkels GHPM. Physical processes in EUV sources for microlithography. Journal of Physics D: Applied Physics, 2011, 44(25): 253001 doi: 10.1088/0022-3727/44/25/253001

    [56]

    Rosselló JM, Reese H, Raman KA, et al. Bubble nucleation and jetting inside a millimetric droplet. Journal of Fluid Mechanics, 2023, 968: A19 doi: 10.1017/jfm.2023.542

    [57]

    Wang J, Li H, Guo W, et al. Rayleigh-Taylor instability of cylindrical water droplet induced by laser-produced cavitation bubble. Journal of Fluid Mechanics, 2021, 919: A42 doi: 10.1017/jfm.2021.401

    [58]

    Zeng Q, Gonzalez-Avila SR, Voorde ST, et al. Jetting of viscous droplets from cavitation-induced Rayleigh-Taylor instability. Journal of Fluid Mechanics, 2018, 846: 916-943 doi: 10.1017/jfm.2018.284

    [59]

    Gonzalez Avila SR, Ohl CD. Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. Journal of Fluid Mechanics, 2016, 805: 551-576 doi: 10.1017/jfm.2016.583

    [60]

    Nishinari K, Fang Y, Guo S, et al. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids, 2014, 39: 301-318 doi: 10.1016/j.foodhyd.2014.01.013

    [61]

    Yasui K. Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold. Ultrasonics, 1998, 36: 575-580 doi: 10.1016/S0041-624X(97)00107-8

    [62]

    Yasui K. Variation of liquid temperature at bubble wall near the sonoluminescence threshold. Journal of the Physical Society of Japan, 1996, 65(9): 2830-2840 doi: 10.1143/JPSJ.65.2830

    [63]

    Bunner B, Tryggvason G. Effect of bubble deformation on the properties of bubbly flows. Journal of Fluid Mechanics, 2003, 495: 77-118 doi: 10.1017/S0022112003006293

    [64]

    Rosselló JM, Ohl CD. On-demand bulk nanobubble generation through pulsed laser illumination. Physical Review Letters, 2021, 127(4): 044502 doi: 10.1103/PhysRevLett.127.044502

    [65]

    Kikuchi Y, Kanagawa T. Weakly nonlinear theory on ultrasound propagation in liquids containing many microbubbles encapsulated by visco-elastic shell. Japanese Journal of Applied Physics, 2021, 60: SDDD14 doi: 10.35848/1347-4065/abebba

    [66]

    Fan X, Waters K, Rowson, et al. Modification of ilmenite surface chemistry for enhancing surfactants adsorption and bubble attachment. Journal of Colloid and Interface Science, 2009, 329(1): 167-172 doi: 10.1016/j.jcis.2008.09.064

    [67]

    Preso DB, Fuster D, Sieber AB, et al. Vapor compression and energy dissipation in a collapsing laser-induced bubble. Physics of Fluids, 2024, 36(3): 033342 doi: 10.1063/5.0200361

    [68]

    Ren Z, Han H, Zeng H, et al. Interactions of a collapsing laser-induced cavitation bubble with a hemispherical droplet attached to a rigid boundary. Journal of Fluid Mechanics, 2023, 976: A11 doi: 10.1017/jfm.2023.895

    [69]

    Nagalingam N, Raghunathan A, Korede V, et al. Laser-induced cavitation for controlling crystallization from solution. Physical Review Letters, 2023, 131(12): 124001 doi: 10.1103/PhysRevLett.131.124001

    [70]

    Phan TH, Nguyen VT, Duy TN, et al. Influence of phase-change on the collapse and rebound stages of a single spark-generated cavitation bubble. International Journal of Heat and Mass Transfer, 2022, 184: 122270 doi: 10.1016/j.ijheatmasstransfer.2021.122270

    [71]

    Dadvand A, Shervani-Tabar MT, Khoo BC. A note on spark bubble drop-on-demand droplet generation: Simulation and experiment. The International Journal of Advanced Manufacturing Technology, 2011, 56: 245-259 doi: 10.1007/s00170-011-3165-1

    [72]

    Fong SW, Adhikari D, Klaseboer E, et al. Interactions of multiple spark-generated bubbles with phase differences. Experiments in Fluids, 2008, 46(4): 705-724

    [73]

    Yao Y, Liu Y, Liu X, et al. Bubble DNA tweezer: A triple-conformation sensor responsive to concentration-ratios. Science, 2024, 27(3): 109074 doi: 10.1016/j.isci.2024.109074

    [74]

    Lacki BC. The fermi bubbles as starburst wind termination shocks. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 444(1): L39-L43 doi: 10.1093/mnrasl/slu107

    [75]

    Lokhandwalla M, Mcateer JA, Jr JC W, et al. Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear. Physics in Medicine and Biology, 2001, 46(4): 1245

    [76]

    Eleanor S, Constantin C. Nucleation, mapping and control of cavitation for drug delivery. Nature Reviews Physics, 2019, 1(8): 495-509 doi: 10.1038/s42254-019-0074-y

    [77]

    Coussios CC, Roy RA. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annual Review of Fluid Mechanics, 2008, 40(1): 395-420 doi: 10.1146/annurev.fluid.40.111406.102116

    [78]

    Murakami K, Yamakawa Y, Zhao J, et al. Ultrasound-induced nonlinear oscillations of a spherical bubble in a gelatin gel. Journal of Fluid Mechanics, 2021, 924: A38 doi: 10.1017/jfm.2021.644

    [79]

    Doinikov AA, Dayton PA. Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field. The Journal of the Acoustical Society of America, 2006, 120(2): 661-669 doi: 10.1121/1.2215228

    [80]

    Tao Y, Wu P, Dai Y, et al. Bridge between mass transfer behavior and properties of bubbles under two-stage ultrasound-assisted physisorption of polyphenols using macroporous resin. Chemical Engineering Journal, 2022, 436: 135158 doi: 10.1016/j.cej.2022.135158

    [81]

    Mancia L, Rodriguez M, Sukovich J, et al. Single-bubble dynamics in histotripsy and high-amplitude ultrasound: Modeling and validation. Physics in Medicine & Biology, 2020, 65(22): 225014

    [82]

    Maeda K, Colonius T. Bubble cloud dynamics in an ultrasound field. Journal of Fluid Mechanics, 2019, 862: 1105-1134 doi: 10.1017/jfm.2018.968

    [83]

    Wang Q, Kawa M, Michael C. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method. Physics of Fluids, 2015, 27(2): 022104 doi: 10.1063/1.4908045

    [84]

    Brujan EA. Cardiovascular cavitation. Medical Engineering & Physics, 2009, 31(7): 742-751

    [85]

    Mo S, Coussios CC, Seymour L, et al. Ultrasound-enhanced drug delivery for cancer. Expert Opinion on Drug Delivery, 2012, 9(12): 1525-1538 doi: 10.1517/17425247.2012.739603

    [86]

    Etame AB, Diaz RJ, Smith CA, et al. Focused ultrasound disruption of the blood-brain barrier: A new frontier for therapeutic delivery in molecular neurooncology. Neurosurgical Focus, 2012, 32(1): E3 doi: 10.3171/2011.10.FOCUS11252

    [87]

    Leslie T, Ritchie R, Illing R, et al. High-intensity focused ultrasound treatment of liver tumours: Post-treatment MRI correlates well with intra-operative estimates of treatment volume. The British Journal of Radiology, 2012, 85(1018): 1363-1370 doi: 10.1259/bjr/56737365

    [88]

    Dubinsky TJ, Cuevas C, Dighe MK, et al. High-intensity focused ultrasound: Current potential and oncologic applications. American Journal of Roentgenology, 2008, 190(1): 191-199 doi: 10.2214/AJR.07.2671

    [89]

    Han J, Fei G, Li G, et al. High intensity focused ultrasound triggered shape memory and drug release from biodegradable polyurethane. Macromolecular Chemistry and Physics, 2013, 214(11): 1195-1203 doi: 10.1002/macp.201200576

    [90]

    Schoppink JJ, Rivera BN, Fernandez RD. Thermocavitation in gold-coated microchannels for needle-free jet injection. Physics of Fluids, 2024, 36(10): 102016 doi: 10.1063/5.0233144

    [91]

    González-Sierra NE, Perez-Corte JM, Padilla-Martinez JP, et al. Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation. Journal of Biomedical Optics, 2023, 28(7): 075004

    [92]

    Bruning MA, Costalonga M, Snoeijer JH, et al. Turning drops into bubbles: Cavitation by vapor diffusion through elastic networks. Physical Review Letters, 2019, 123(21): 214501 doi: 10.1103/PhysRevLett.123.214501

    [93]

    Kyriazis N, Koukouvinis P, Gavaises M. Modelling cavitation during drop impact on solid surfaces. Advances in Colloid and Interface Science, 2018, 260: 46-64 doi: 10.1016/j.cis.2018.08.004

    [94]

    Kuijpers MWA, Eck DV, Kemmere MF, et al. Cavitation-induced reactions in high-pressure carbon dioxide. Science, 2002, 298(5600): 1969-1971 doi: 10.1126/science.1078022

    [95]

    Riesz P, Kondo T. Free radical formation induced by ultrasound and its biological implications. Free Radical Biology and Medicine, 1992, 13(3): 247-270 doi: 10.1016/0891-5849(92)90021-8

    [96]

    Li Q, Ma Y, Mao C, et al. Grafting modification and structural degradation of multi-walled carbon nanotubes under the effect of ultrasonics sonochemistry. Ultrasonics Sonochemistry, 2009, 16(6): 752-757 doi: 10.1016/j.ultsonch.2009.03.006

    [97]

    Chatel G. How sonochemistry contributes to green chemistry? Ultrasonics Sonochemistry, 2018, 40: 117-122

    [98]

    Hilgenfeldt S, Brenner MP, Grossmann S, et al. Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. Journal of Fluid Mechanics, 1998, 365: 171-204 doi: 10.1017/S0022112098001207

    [99]

    Nourhani A, Karshalev E, Soto F, et al. Multigear bubble propulsion of transient micromotors. Research (Wash DC), 2020, 2020: 7823615

    [100]

    Janiak J, Li Y, Ferry Y, et al. Acoustic microbubble propulsion, train-like assembly and cargo transport. Nature Communications, 2023, 14(1): 4705 doi: 10.1038/s41467-023-40387-7

    [101]

    Xu T, Soto F, Gao W, et al. Ultrasound-modulated bubble propulsion of chemically powered microengines. Journal of the American Chemical Society, 2014, 136(24): 8552-8555 doi: 10.1021/ja504150e

    [102]

    Lohse D, Schmitz B, Versluis M. Snapping shrimp make flashing bubbles. Nature, 2001, 413: 477-478

    [103]

    Versluis M, Schmitz B, Heydt AVD, et al. How snapping shrimp snap: through cavitating bubbles. Science, 2000, 289(5487): 2114-2117 doi: 10.1126/science.289.5487.2114

    [104]

    Fu Y, Hu X, Liu Y, et al. Impact-induced bubble interactions and coalescence in soft materials. International Journal of Solids and Structures, 2022, 238: 111387 doi: 10.1016/j.ijsolstr.2021.111387

    [105]

    Fu Y, Lu H, Nian G, et al. Size-dependent inertial cavitation of soft materials. Journal of the Mechanics and Physics of Solids, 2020, 137: 103859 doi: 10.1016/j.jmps.2019.103859

    [106]

    Fogaça D A, Sanches SM, Fariello R, et al. Bubble dynamics and the quark-hadron phase transition in nuclear collisions. Physical Review C, 2016, 93(5): 055204 doi: 10.1103/PhysRevC.93.055204

    [107]

    Wang Y, Zaytsev ME, Lajoinie G, et al. Giant and explosive plasmonic bubbles by delayed nucleation. Proceedings of the National Academy of Sciences, 2018, 115(30): 7676-7681 doi: 10.1073/pnas.1805912115

    [108]

    Vakarelski IU, Patankar NA, Marston JO, et al. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 2012, 489(7415): 274-277 doi: 10.1038/nature11418

    [109]

    Klaseboer E, Manica R, Chan DYC, et al. BEM simulations of potential flow with viscous effects as applied to a rising bubble. Engineering Analysis with Boundary Elements, 2011, 35(3): 489-494 doi: 10.1016/j.enganabound.2010.09.005

    [110]

    Chew LW, Klaseboer E, Ohl SW, et al. Interaction of two differently sized oscillating bubbles in a free field. Physical Review E, 2011, 84: 066307 doi: 10.1103/PhysRevE.84.066307

    [111]

    Ohl CD, Arora M, Ikink R, et al. Sonoporation from jetting cavitation bubbles. Biophysical Journal, 2006, 91(11): 4285-4295 doi: 10.1529/biophysj.105.075366

    [112]

    Brujan EA, Ikeda T, Matsumoto Y. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Physics in Medicine and Biology, 2005, 50(20): 4797-4809 doi: 10.1088/0031-9155/50/20/004

    [113]

    Obreschkow D, Tinguely M, Dorsaz N, et al. Universal scaling law for jets of collapsing bubbles. Physical Review Letters, 2011, 107(20): 204501 doi: 10.1103/PhysRevLett.107.204501

    [114]

    Saade Y, Jalaal M, Prosperetti A, et al. Crown formation from a cavitating bubble close to a free surface. Journal of Fluid Mechanics, 2021, 926: A5 doi: 10.1017/jfm.2021.676

    [115]

    Li T, Zhang AM, Wang SP, et al. Bubble interactions and bursting behaviors near a free surface. Physics of Fluids, 2019, 31(4): 042104 doi: 10.1063/1.5088528

    [116] 李帅, 张阿漫, 韩蕊. 水中高压脉动气泡水射流形成机理及载荷特性研究. 力学学报, 2019, 51(6): 1666-1681 (Li Shuai, Zhang Aman, Han Rui. The mechanism of jetting behaviors of an oscillating bubble. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1666-1681 (in Chinese) doi: 10.6052/0459-1879-19-219

    Li Shuai, Zhang Aman, Han Rui. The mechanism of jetting behaviors of an oscillating bubble. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1666-1681 (in Chinese) doi: 10.6052/0459-1879-19-219

    [117]

    Turangan CK, Ong GP, Klaseboer E, et al. Experimental and numerical study of transient bubble-elastic membrane interaction. Journal of Applied Physics, 2006, 100(5): 054910 doi: 10.1063/1.2338125

    [118] 王永帅, 王鑫程, 程怀玉等. 考虑气核生长溃灭效应的螺旋桨梢涡空化初生数值模拟研究. 力学学报, 2023, 55(7): 1417-1427 (Wang Yongshuai, Wang Xincheng, Cheng Huaiyu, et al. Numerical simulation of propeller tip vortex cavitation inception considering the effect of nuclei growth and collapse. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1417-1427 (in Chinese) doi: 10.6052/0459-1879-23-080

    Wang Yongshuai, Wang Xincheng, Cheng Huaiyu, et al. Numerical simulation of propeller tip vortex cavitation inception considering the effect of nuclei growth and collapse. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1417-1427 (in Chinese) doi: 10.6052/0459-1879-23-080

    [119] 田北晨, 李林敏, 陈杰等. 绕水翼空化流动多尺度数值研究. 力学学报, 2022, 54(6): 1557-1571 (Tian Beichen, Li Linmin, Chen Jie, et al. Numerical study of multiscale cavitating flow around a hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1557-1571 (in Chinese) doi: 10.6052/0459-1879-22-022

    Tian Beichen, Li Linmin, Chen Jie, et al. Numerical study of multiscale cavitating flow around a hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1557-1571 (in Chinese) doi: 10.6052/0459-1879-22-022

    [120]

    Han R, Zhang AM, Tan S, et al. Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple timescales. Journal of Fluid Mechanics, 2022, 932(10): A8

    [121]

    Brujan EA, Zhang AM, Liu YL, et al. Jetting and migration of a laser-induced cavitation bubble in a rectangular channel. Journal of Fluid Mechanics, 2022, 948: A6 doi: 10.1017/jfm.2022.695

    [122]

    Lebo M, Peters IR. Jet direction in bubble collapse within rectangular and triangular channels. Physical Review E, 2019, 100: 063105 doi: 10.1103/PhysRevE.100.063105

    [123]

    Yasui K. Effects of thermal conduction on bubble dynamics near the sonoluminescence threshold. The Journal of the Acoustical Society of America, 1995, 98(5): 2772-2782 doi: 10.1121/1.413242

    [124]

    Fujikawa S, Akamatsu T. Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. Journal of Fluid Mechanics, 1980, 97(3): 481-512 doi: 10.1017/S0022112080002662

    [125]

    Krishna R, Baten JMV. Simulating the motion of gas bubbles in a liquid. Nature, 1999, 398: 208 doi: 10.1038/18353

    [126]

    Cui P, Zhang AM, Wang SP. Small-charge underwater explosion bubble experiments under various boundary conditions. Physics of Fluids, 2016, 28(11): 117103 doi: 10.1063/1.4967700

    [127]

    Zhang AM, Wang SP, Huang C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics. European Journal of Mechanics - B/Fluids, 2013, 42: 69-91 doi: 10.1016/j.euromechflu.2013.06.008

    [128]

    Besant WH. Hydrostatics and Hydromechanics. Bell, London, 1859

    [129]

    Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine, 1917, 34: 94-98

    [130]

    Lamb H. Hydrodynamics. New York Dover, 1945: 181-185

    [131]

    Plesset MS. The dynamics of cavitation bubbles. Journal of Applied Mechanics, 1949, 16: 277-282 doi: 10.1115/1.4009975

    [132]

    Evert K, Khoo BC. A modified Rayleigh-Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods. Engineering Analysis with Boundary Elements, 2006, 30(1): 59-71 doi: 10.1016/j.enganabound.2005.09.003

    [133]

    Noltingk BE, Neppiras EA. Cavitation produced by ultrasonics. Proceedings of the Physical Society Section B, 1950, 63: 674

    [134]

    Poritsky H. The growth or collapse of a spherical bubble or cavity in a viscous fluid//Proceedings of the US First National Congress of Applied Mechanics (ASME), 1952

    [135]

    Keller J, Miksis M. Bubble oscillations of large amplitude. The Journal of the Acoustical Society of America, 1980, 68: 628-633 doi: 10.1121/1.384720

    [136]

    Keller J, Kolodner II. Damping of underwater explosion bubble oscillations. Journal of Applied Physics, 1956, 27(10): 1152-1161 doi: 10.1063/1.1722221

    [137]

    Gilmore FR. The growth and collapse of a spherical bubble in a viscous compressible liquid. Hydrodynamics Laboratory, California Institute of Technology, Report No. 26-4, 1952

    [138]

    Pezzi A, Prosperetti A. Bubble dynamics in a compressible liquid. Part 2. Second-order theory. Journal of Fluid Mechanics, 1987, 185: 289-321

    [139]

    Herring C. Theory of the pulsations of the gas bubble produced by an underwater explosion. Tech Rep. NDRC Division 6 Report C4-sr20. National Defense Research Committee, 1941

    [140]

    Trilling L. The collapse and rebound of a gas bubble. Journal of Applied Physics, 1952, 23(1): 14-17 doi: 10.1063/1.1701962

    [141]

    Hickling R, Plesset MS. Collapse and rebound of a spherical bubble in water. Physics of Fluids, 1964, 7(1): 7 doi: 10.1063/1.1711058

    [142]

    Flynn HG. Cavitation dynamics. I. A mathematical formulation. The Journal of the Acoustical Society of America, 1975, 57: 1379 doi: 10.1121/1.380624

    [143]

    Yasui K, Izu N. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach. The Journal of the Acoustical Society of America, 2017, 141(6): 4398-4407 doi: 10.1121/1.4985385

    [144]

    Yasui K. Single-bubble and multibubble sonoluminescence. Physical Review Letters, 1999, 83: 4297 doi: 10.1103/PhysRevLett.83.4297

    [145]

    Hicks AN. Effect of bubble migration on explosion-induced whipping in ships. Technical Report 3301, Naval Ship Research and Development Center, Bethesda, MD, 1970

    [146]

    Ma J, Hsiao CT, Chahine GL. Numerical study of acoustically driven bubble cloud dynamics near a rigid wall. Ultrasonics Sonochemistry, 2018, 40(Pt A): 944-954

    [147]

    Geers TL, Hunter K. An integrated wave-effects model for an underwater explosion bubble. Journal of the Acoustical Society of America, 2002, 111(4): 1584-1601 doi: 10.1121/1.1458590

    [148]

    Zhang AM, Li SM, Cui P, et al. A unified theory for bubble dynamics. Physics of Fluids, 2023, 35(3): 033323 doi: 10.1063/5.0145415

    [149]

    Zhang AM, Li SM, Xu RZ, et al. A theoretical model for compressible bubble dynamics considering phase transition and migration. Journal of Fluid Mechanics, 2024, 999: A58 doi: 10.1017/jfm.2024.954

    [150]

    Harkin A, Kaper TJ, Nadim ALI. Coupled pulsation and translation of two gas bubbles in a liquid. Journal of Fluid Mechanics, 2001, 445: 377-411 doi: 10.1017/S0022112001005857

    [151]

    Doinikov AA. Mathematical model for collective bubble dynamics in strong ultrasound fields. The Journal of the Acoustical Society of America, 2004, 116: 821-827

    [152]

    Shima A, Tomita Y. The behavior of a spherical bubble near a solid wall in a compressible liquid. Ingenieur-Archiv, 1981, 51: 243-255 doi: 10.1007/BF00535992

    [153]

    Shima A. The natural frequencies of two spherical bubbles oscillating in water. Journal of Basic Engineering, 1971, 93: 426-431 doi: 10.1115/1.3425268

    [154]

    Plesset M, Prosperetti A. Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 1977, 9(1): 145-85 doi: 10.1146/annurev.fl.09.010177.001045

    [155]

    Chahine G, Genoux PF. Collapse of a cavitating vortex ring. Journal of Fluids Engineering, 1983, 105: 400-405 doi: 10.1115/1.3241018

    [156]

    Epstein PS, Plesset MS. On the stability of gas bubbles in liquid-gas solutions. The Journal of Chemical Physics, 1950, 18(11): 1505-1509 doi: 10.1063/1.1747520

    [157]

    Blake JR, Robinson PB, Shima A, et al. Interaction of two cavitation bubbles with a rigid boundary. Journal of Fluid Mechanics, 1993, 255: 707-721 doi: 10.1017/S0022112093002654

    [158]

    Blake JR, Taib BM, Doherty G. Transient cavities near boundaries Part 2. Free surface. Journal of Fluid Mechanics, 1987, 181: 197-212 doi: 10.1017/S0022112087002052

    [159]

    Blake JR, Taib BM, Doherty G. Transient cavities near boundaries. Part 1. Rigid boundary. Journal of Fluid Mechanics, 1986, 170: 479-497

    [160]

    Blake JR. Growth and collapse of a vapour cavity near a free surface. Journal of Fluid Mechanics, 1981, 111: 123-140

    [161]

    Blake JR, Howison SD, Ockendon JR, et al. Collapsing cavities, toroidal bubbles and jet impact. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1997, 355(1724): 537-550 doi: 10.1098/rsta.1997.0023

    [162]

    Wang Q, Yeo KS, Khoo BC, et al. Strong interaction between a buoyancy bubble and a free surface. Theoretical and Computational Fluid Dynamics, 1996, 8: 73-88 doi: 10.1007/BF00312403

    [163]

    Wang QX, Yeo KS, Khoo BC, et al. Nonlinear interaction between gas bubble and free surface. Computers & Fluids, 1996, 25(7): 607-628

    [164]

    Zhang S, Duncan JH, Chahine G. The final stage of the collapse of a cavitation bubble near a rigid wall. Journal of Fluid Mechanics, 2006, 257: 147-181

    [165]

    Best JP. The formation of toroidal bubbles upon the collapse of transient cavities. Journal of Fluid Mechanics, 2006, 251: 79-107

    [166]

    Zhang AM, Liu YL. Improved three-dimensional bubble dynamics model based on boundary element method. Journal of Computational Physics, 2015, 294: 208-223 doi: 10.1016/j.jcp.2015.03.049

    [167]

    Zhang AM, Li S, Cui J. Study on splitting of a toroidal bubble near a rigid boundary. Physics of Fluids, 2015, 27(6): 062102 doi: 10.1063/1.4922293

    [168]

    Sankaranarayanan K, Kevrekidis IG, Sundaresan S, et al. A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations. International Journal of Multiphase Flow, 2003, 29(1): 109-116 doi: 10.1016/S0301-9322(02)00120-9

    [169]

    Tian ZL, Liu YL, Zhang AM, et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method. Computers & Fluids, 2018, 170: 41-52

    [170]

    Liu YL, Zhang AM, Tian ZL, et al. Investigation of free-field underwater explosion with Eulerian finite element method. Ocean Engineering, 2018, 166: 182-190 doi: 10.1016/j.oceaneng.2018.08.001

    [171]

    Koch M, Lechner C, Reuter F, et al. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Computers & Fluids, 2016, 126: 71-90

    [172]

    Chahine GL, Kalumuck KM, Hsiao CT. Simulation of surface piercing body coupled response to underwater bubble dynamics utilizing 3DYNAFS, a three-dimensional BEM code. Computational Mechanics, 2003, 32(4-6): 319-326 doi: 10.1007/s00466-003-0489-1

    [173]

    Zhang AM, Yang WS, Huang C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination. Computers & Fluids, 2013, 71: 169-178

    [174]

    Chen GQ, Zhang AM, Huang X. On the interaction between bubbles and the free surface with high density ratio 3D lattice Boltzmann method. Theoretical and Applied Mechanics Letters, 2018, 8(4): 252-256 doi: 10.1016/j.taml.2018.04.006

    [175]

    Chang X, Huang H, Lu XY. Thermal lattice Boltzmann study of three-dimensional bubble growth in quiescent liquid. Computers & Fluids, 2017, 159: 232-242

    [176]

    Lechner C, Lauterborn W, Koch M, et al. Jet formation from bubbles near a solid boundary in a compressible liquid: Numerical study of distance dependence. Physical Review Fluids, 2020, 5(9): 093604 doi: 10.1103/PhysRevFluids.5.093604

    [177]

    Lechner C, Lauterborn W, Koch M, et al. Fast, thin jets from bubbles expanding and collapsing in extreme vicinity to a solid boundary: A numerical study. Physical Review Fluids, 2019, 4(2): 021601 doi: 10.1103/PhysRevFluids.4.021601

    [178]

    Liu W, Zhang AM, Miao XH, et al. Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method. Journal of Fluid Mechanics, 2023, 958: A42 doi: 10.1017/jfm.2023.120

    [179]

    Asghar E, Tryggvason G. Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays. Journal of Fluid Mechanics, 1998, 377: 313-345

    [180]

    Nakajima K, Shima A. Analysis of the behavior of a bubble in a viscous incompressible liquid by finite element method. Ingenieur-Archiv, 1977, 46: 21-34 doi: 10.1007/BF00534957

    [181]

    Tian ZL, Liu YL, Zhang AM, et al. Jet development and impact load of underwater explosion bubble on solid wall. Applied Ocean Research, 2020, 95: 102013 doi: 10.1016/j.apor.2019.102013

    [182]

    Liu YL, A Man Z, Zhao Li T, et al. Dynamical behavior of an oscillating bubble initially between two liquids. Physics of Fluids, 2019, 31(9): 092111 doi: 10.1063/1.5113801

    [183]

    Fan Y, Bußmann A, Reuter F, et al. Amplification of supersonic microjets by resonant inertial cavitation-bubble pair. Physical Review Letters, 2024, 132(10): 104004 doi: 10.1103/PhysRevLett.132.104004

    [184]

    Ashoke RK, Manuel RJ, Reese H, et al. Microemulsification from single laser-induced cavitation bubbles. Journal of Fluid Mechanics, 2022, 953: A27 doi: 10.1017/jfm.2022.971

    [185]

    Haimovich O, Frankel SH. Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Computers & Fluids, 2017, 146: 105-116

    [186]

    Adebayo EM, Tsoutsanis P, Jenkins KW. Application of central-weighted essentially non-oscillatory finite-volume interface-capturing schemes for modeling cavitation induced by an underwater explosion. Fluids, 2024, 9(2): 33 doi: 10.3390/fluids9020033

    [187]

    Li MK, Zhang AM, Ming FR, et al. An axisymmetric multiphase SPH model for the simulation of rising bubble. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113039 doi: 10.1016/j.cma.2020.113039

    [188]

    Peng YX, Zhang AM, Ming FR. Particle regeneration technique for Smoothed Particle Hydrodynamics in simulation of compressible multiphase flows. Computer Methods in Applied Mechanics and Engineering, 2021, 376: 113653 doi: 10.1016/j.cma.2020.113653

    [189]

    Meng ZF, Sun PN, Xu Y, et al. High-order Eulerian SPH scheme through W/TENO reconstruction based on primitive variables for simulating incompressible flows. Computer Methods in Applied Mechanics and Engineering, 2024, 427: 117065 doi: 10.1016/j.cma.2024.117065

    [190]

    Meng ZF, Zhang AM, Wang PP, et al. A targeted essentially non-oscillatory (TENO) SPH method and its applications in hydrodynamics. Ocean Engineering, 2022, 243: 110100 doi: 10.1016/j.oceaneng.2021.110100

    [191]

    Wu WB, Zhang AM, Liu M. A cell-centered indirect Arbitrary-Lagrangian-Eulerian discontinuous Galerkin scheme on moving unstructured triangular meshes with topological adaptability. Journal of Computational Physics, 2021, 438: 110368 doi: 10.1016/j.jcp.2021.110368

    [192]

    Tian ZL, Liu YL, Zhang AM, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method. Ocean Engineering, 2020, 196(15): 106714

    [193]

    Long X, Cheng H, Ji B, et al. Large eddy simulation and Euler-Lagrangian Coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. International Journal of Multiphase Flow, 2018, 100: 41-56 doi: 10.1016/j.ijmultiphaseflow.2017.12.002

    [194]

    Qin H, Liu YL, Tian ZL, et al. Numerical investigation of the underwater explosion of a cylindrical explosive with the Eulerian finite-element method. Physics of Fluids, 2024, 36: 016104 doi: 10.1063/5.0177017

    [195]

    Zhang X, Zhang Y, Liew KM. Machine learning predictive model for dynamic response of rising bubbles impacting on a horizontal wall. Computer Methods in Applied Mechanics and Engineering, 2024, 429: 117157 doi: 10.1016/j.cma.2024.117157

    [196]

    Cheng L, Huang F, Wu H, et al. Comparative analysis of blast load transfer and structural damage in multi-cabin structures during air and underwater explosions. Ocean Engineering, 2024, 297: 116953 doi: 10.1016/j.oceaneng.2024.116953

    [197]

    Madabhushi A, Mahesh K. A compressible multi-scale model to simulate cavitating flows. Journal of Fluid Mechanics, 2023, 961: A6 doi: 10.1017/jfm.2023.192

    [198]

    Ghahramani E, Ström H, Bensow RE. Numerical simulation and analysis of multi-scale cavitating flows. Journal of Fluid Mechanics, 2021, 922: A22 doi: 10.1017/jfm.2021.424

    [199]

    Peters A, El Moctar O. Numerical assessment of cavitation-induced erosion using a multi-scale Euler-Lagrange method. Journal of Fluid Mechanics, 2020, 894: A19 doi: 10.1017/jfm.2020.273

    [200]

    Yang Y, Xiong C, Wang S, et al. Cavitation erosion risk on a hydrofoil using a multi-scale method. Physics of Fluids, 2025, in press

    [201]

    Benjamin T, Ellis AT. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of The Royal Society of London Series A-Mathemat, 1966, 260: 221-240

    [202]

    Cerbus RT, Chraibi H, Tondusson M, et al. Experimental and numerical study of laser-induced secondary jetting. Journal of Fluid Mechanics, 2022, 934: A14 doi: 10.1017/jfm.2021.1117

    [203]

    Zhong X, Eshraghi J, Vlachos P, et al. A model for a laser-induced cavitation bubble. International Journal of Multiphase Flow, 2020, 132: 103433 doi: 10.1016/j.ijmultiphaseflow.2020.103433

    [204]

    Hupfeld T, Laurens G, Merabia S, et al. Dynamics of laser-induced cavitation bubbles at a solid-liquid interface in high viscosity and high capillary number regimes. Journal of Applied Physics, 2020, 127(4): 044306 doi: 10.1063/1.5116111

    [205]

    Yoshiyuki T, Shota Y, Keisuke H, et al. On pressure impulse of a laser-induced underwater shock wave. Journal of Fluid Mechanics, 2016, 808: 5-18 doi: 10.1017/jfm.2016.644

    [206]

    Han B, Köhler K, Jungnickel K, et al. Dynamics of laser-induced bubble pairs. Journal of Fluid Mechanics, 2015, 771: 706-742 doi: 10.1017/jfm.2015.183

    [207]

    Lauterborn W, Vogel A. Shock wave emission by laser generated bubbles//Bubble Dynamics and Shock Waves. Delale CF ed. 2013: 67-103

    [208]

    Oh J, Yoo Y, Seung S, et al. Laser-induced bubble formation on a micro gold particle levitated in water under ultrasonic field. Experimental Thermal and Fluid Science, 2018, 93: 285-291 doi: 10.1016/j.expthermflusci.2018.01.002

    [209]

    Guo XD, Wang SN, Liu NN, et al. Experimental investigation on the interaction of spark-generated array bubbles near a rigid wall. Physics of Fluids, 2024, 36: 047117 doi: 10.1063/5.0199266

    [210]

    Liang W, Chen R, Zheng J, et al. Interaction of two approximately equal-size bubbles produced by sparks in a free field. Physics of Fluids, 2021, 33(6): 067107 doi: 10.1063/5.0051550

    [211]

    Zhang S, Zhang AM, Wang SP, et al. Dynamic characteristics of large scale spark bubbles close to different boundaries. Physics of Fluids, 2017, 29(9): 092107 doi: 10.1063/1.4986821

    [212]

    Goh BHT, Gong SW, Ohl SW, et al. Spark-generated bubble near an elastic sphere. International Journal of Multiphase Flow, 2017, 90: 156-166 doi: 10.1016/j.ijmultiphaseflow.2016.03.021

    [213]

    Dadvand A, Khoo BC, Shervani-Tabar MT, et al. Boundary element analysis of the droplet dynamics induced by spark-generated bubble. Engineering Analysis with Boundary Elements, 2012, 36(11): 1595-1603 doi: 10.1016/j.enganabound.2012.04.009

    [214]

    Chen R, Liang W, Zheng J, et al. Experimental study on the interaction of three linearly arranged spark bubbles with controlled phase differences. Physics of Fluids, 2022, 34(3): 037105 doi: 10.1063/5.0083631

    [215]

    Li S, Zhang AM, Han R, et al. Experimental and numerical study of two underwater explosion bubbles: Coalescence, fragmentation and shock wave emission. Ocean Engineering, 2019, 190: 106414 doi: 10.1016/j.oceaneng.2019.106414

    [216]

    Menon S, Lal M. On the dynamics and instability of bubbles formed during underwater explosions. Experimental Thermal and Fluid Science, 1998, 16(4): 305-321 doi: 10.1016/S0894-1777(97)10038-3

    [217]

    Cole RH. Underwater Explosions. Dover: Princeton University Press, 1948

    [218]

    Zhang D, Liu HS, Xing L, et al. Simulation and verification of an air-gun array wavelet in time-frequency domain based on van der waals gas equation. Applied Geophysics, 2021, 17(5-6): 736-746

    [219]

    Shen H, Tao C, Wang H, et al. Characteristics of the far-field source signature and its ghost effect of a marine single air gun. Ocean Engineering, 2023, 281: 114821 doi: 10.1016/j.oceaneng.2023.114821

    [220]

    Zhang S, Wang SP, Zhang AM, et al. Numerical study on motion of the air-gun bubble based on boundary integral method. Ocean Engineering, 2018, 154: 70-80 doi: 10.1016/j.oceaneng.2018.02.008

    [221]

    Supponen O, Obreschkow D, Tinguely M, et al. Scaling laws for jets of single cavitation bubbles. Journal of Fluid Mechanics, 2016, 802: 263-293 doi: 10.1017/jfm.2016.463

    [222]

    Li SM, Liu YL, Wang Q, et al. Dynamics of a buoyant pulsating bubble near two crossed walls. Physics of Fluids, 2021, 33(7): 073310 doi: 10.1063/5.0057594

    [223]

    Ma T, Wang J, Liu L, et al. Study on structural response of water-back plate under the combined action of shock wave and bubble loads generated by cylindrical charge in deep-water environment. Thin-Walled Structures, 2024, 194: 111307 doi: 10.1016/j.tws.2023.111307

    [224]

    Han S, Li Y, Zhu H. The similarities and differences between the bubble collapse near a solid wall and in free water. European Journal of Mechanics - B/Fluids, 2020, 84: 553-561 doi: 10.1016/j.euromechflu.2020.08.001

    [225]

    Shervani-Tabar MT, Abdullah A, Shabgard MR. Numerical study on the dynamics of an electrical discharge generated bubble in EDM. Engineering Analysis with Boundary Elements, 2006, 30(6): 503-514 doi: 10.1016/j.enganabound.2006.01.014

    [226]

    Li JB, Xu WL, Zhai YW, et al. Influence of multiple air bubbles on the collapse strength of a cavitation bubble. Experimental Thermal and Fluid Science, 2021, 123: 110328

    [227]

    Han R, Tao L, Zhang AM, et al. A three-dimensional modeling for coalescence of multiple cavitation bubbles near a rigid wall. Physics of Fluids, 2019, 31(6): 062107 doi: 10.1063/1.5097929

    [228]

    Cui P, Wang Q, Wang SP, et al. Experimental study on interaction and coalescence of synchronized multiple bubbles. Physics of Fluids, 2016, 28(1): 012103 doi: 10.1063/1.4939007

    [229]

    Xiong C, Wang S, Dong Q, et al. On the interfacial instabilities of a ventilation cavity induced by gaseous injection into liquid crossflow. Journal of Fluid Mechanics, 2024, 980: A44 doi: 10.1017/jfm.2024.23

    [230] 李鹏, 陈炜烨, 王志等. 高速水洞中超空泡稳定性与通气率定量试验研究. 船舶力学, 2024, 28(4): 479-484 (Li Peng, Chen Weiye, Wang Zhi, et al. Experimental study of supercavity stability and ventilation rate in high speed water tunnel. Journal of Ship Mechanics, 2024, 28(4): 479-484 (in Chinese) doi: 10.3969/j.issn.1007-7294.2024.04.001

    Li Peng, Chen Weiye, Wang Zhi, et al. Experimental study of supercavity stability and ventilation rate in high speed water tunnel. Journal of Ship Mechanics, 2024, 28(4): 479-484 (in Chinese) doi: 10.3969/j.issn.1007-7294.2024.04.001

    [231]

    Ye Q, Wang Y, Shao X. Dynamics of cavitating tip vortex. Journal of Fluid Mechanics, 2023, 967: A30 doi: 10.1017/jfm.2023.465

    [232]

    Liu Y, Zhang H, Zhang W, et al. Bubble size distribution at early stage of hydrodynamic cloud cavitation. Physics of Fluids, 2023, 35(6): 063305 doi: 10.1063/5.0154309

    [233]

    Wang B, Tian X, Zhang Y, et al. Seismic signature of an untuned large-volume airgun array fired in a water reservoir. Seismological Research Letters, 2018, 89(3): 983-991 doi: 10.1785/0220180007

    [234]

    Choi K, Kim H, Kim C. Effects of phase change in double underwater explosion bubbles. Ocean Engineering, 2024, 308: 118254 doi: 10.1016/j.oceaneng.2024.118254

    [235]

    Wang L, Zhang YF, Li H, et al. Theoretical and numerical studies of the coupled Bjerknes and buoyancy effects on the dynamics of an underwater explosion bubble near a free surface. Ocean Engineering, 2024, 297: 117101 doi: 10.1016/j.oceaneng.2024.117101

    [236]

    Zhang S, Wang SP, Liu YL, et al. Interaction of clustered air gun bubbles in marine prospecting. Ocean Engineering, 2019, 191: 106523 doi: 10.1016/j.oceaneng.2019.106523

    [237]

    King JRC. Air-gun bubble-ghost interactions. Geophysics, 2015, 80(6): T223-T234 doi: 10.1190/geo2015-0143.1

    [238]

    Ziolkowski A. Inversion of explosive source land seismic data to determine source signature parameters. Geophysical Prospecting, 2021, 69(4): 679-708 doi: 10.1111/1365-2478.13079

    [239]

    Ziolkowski A, Parkes GE, Hatton L, et al. The signature of an air gun array: Computation from near-field measurements including interactions. Geophysics, 1982, 47(10): 1413-1421

    [240]

    Liu Y, Zhang S, Li S, et al. Application of the unified equation of bubble dynamics for simulating the large-scale air-gun bubble with migration effect. Physics of Fluids, 2023, 35(12): 127125 doi: 10.1063/5.0180485

    [241]

    Nowak PR, Szlachta A, Gajewski T, et al. Small-scale underwater explosion in shallow-water tank. Ocean Engineering, 2023, 288: 115894 doi: 10.1016/j.oceaneng.2023.115894

    [242]

    Gong S, Ohl SW, Klaseboer E, et al. Scaling law for bubbles induced by different external sources: Theoretical and experimental study. Physical Review E, 2010, 81: 056317 doi: 10.1103/PhysRevE.81.056317

    [243]

    Klaseboer E, Hung K, Wang C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. Journal of Fluid Mechanics, 2005, 537(1): 387-413 doi: 10.1017/S0022112005005306

    [244]

    Li MK, Wang SP, Zhang S, et al. Experimental study of underwater explosions below a free surface: Bubble dynamics and pressure wave emission. Physics of Fluids, 2023, 35(8): 083313 doi: 10.1063/5.0155177

图(13)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  55
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-28
  • 录用日期:  2025-01-02
  • 网络出版日期:  2025-01-02
  • 发布日期:  2025-01-02
  • 刊出日期:  2025-01-17

目录

/

返回文章
返回