EI、Scopus 收录
中文核心期刊

低频弹性波超材料的若干进展

王凯, 周加喜, 蔡昌琦, 徐道临, 文桂林

王凯, 周加喜, 蔡昌琦, 徐道临, 文桂林. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694. DOI: 10.6052/0459-1879-22-108
引用本文: 王凯, 周加喜, 蔡昌琦, 徐道临, 文桂林. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694. DOI: 10.6052/0459-1879-22-108
Wang Kai, Zhou Jiaxi, Cai Changqi, Xu Daolin, Wen Guilin. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694. DOI: 10.6052/0459-1879-22-108
Citation: Wang Kai, Zhou Jiaxi, Cai Changqi, Xu Daolin, Wen Guilin. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694. DOI: 10.6052/0459-1879-22-108
王凯, 周加喜, 蔡昌琦, 徐道临, 文桂林. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694. CSTR: 32045.14.0459-1879-22-108
引用本文: 王凯, 周加喜, 蔡昌琦, 徐道临, 文桂林. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694. CSTR: 32045.14.0459-1879-22-108
Wang Kai, Zhou Jiaxi, Cai Changqi, Xu Daolin, Wen Guilin. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694. CSTR: 32045.14.0459-1879-22-108
Citation: Wang Kai, Zhou Jiaxi, Cai Changqi, Xu Daolin, Wen Guilin. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694. CSTR: 32045.14.0459-1879-22-108

低频弹性波超材料的若干进展

基金项目: 国家自然科学基金(12002122, 12122206, 11972152, 11832009)和重庆市自然科学基金(cstc2021jcyj-msxmX0461)资助项目
详细信息
    作者简介:

    周加喜, 教授, 主要研究方向: 特种装备低频减振隔振. E-mail: jxizhou@hnu.edu.cn

  • 中图分类号: O327

REVIEW OF LOW-FREQUENCY ELASTIC WAVE METAMATERIALS

  • 摘要: 超材料是一类新兴的具有超常物理性质的人造周期/拟周期材料, 能够改变电磁波、声波以及弹性波等在介质中的传播特性. 因在航天、国防以及民用科学等方面的巨大应用潜力, 超材料自被提出后便受到极大的关注并引发研究热潮. 弹性波超材料是超材料的一种, 能够基于弹性波与超材料结构的相互耦合作用实现对弹性波的操控. 带隙是评估弹性波超材料实现弹性波操控的重要工具, 其性质与超材料的材料参数、晶格常数以及局域振子的固有频率相关. 受制于超材料的承载能力、外观尺寸以及局域振子结构等因素, 利用传统超材料开启低频(约100 Hz)弹性波带隙依然存在较大困难. 文章首先简要介绍超材料开启弹性波带隙的基本原理, 然后从低频弹性波超材料基本结构与低频带隙实现方法、低频带隙优化与调控策略、低频带隙潜在应用等三个方面详细总结低频弹性波超材料的研究工作. 其中, 低频带隙超材料的基本结构主要包括布拉格散射型超材料、传统局域共振型超材料以及准零刚度局域共振超材料. 文章通过总结低频弹性波超材料的研究进展, 分析了目前研究中的不足并对未来低频弹性波的研究方向进行了展望.
    Abstract: Metamaterial, a type of burgeoning man-made material/structure, possesses a periodic/quasi-periodic structure and is able to change the transmission properties of the electromagnetic wave, the acoustic wave and the elastic wave. Due to its enormous potentiality in the field of the spaceflight, national defence and civilian, the metamaterial attracted great interest, inspired a new wave of research and obtained consecutive important achievement since it was proposed. Elastic wave metamaterial is a kind of metamaterial which is capable of realizing the attenuation and manipulation of the elastic wave on the basis of the interaction of the elastic wave and the periodic/ quasi-periodic structure. Band structure design is an important tool for the elastic wave metamaterial to execute the wave manipulation and attenuation. The location, width and wave suppression performance of the frequency band are related to the nature of materials, the lattice constant of the metamaterial, and the resonant frequency of the local resonator. Because of the limitations such as the carrying capacity, the overall size, and the structure of the local resonator, it is still difficult to obtain an elastic wave band gap in the frequency range around 100 Hz through the conventional metamaterials. This review introduces the fundamental principle of the metamaterial for opening elastic wave band gaps firstly, and then elaborates the low-frequency elastic wave metamaterial from three aspects: the fundamental configuration of the metamaterial, the low-frequency band gap optimization and tuning, and some potential applications. The fundamental configurations of low-frequency elastic wave metamaterials mainly include three aspects: Bragg scattering metamaterials, conventional local resonant metamaterials and quasi-zero-stiffness local resonant metamaterials. The low-frequency band tunability achieved by both the passive and active approaches detailed as well. This review summarizes the current knowledge of the low-frequency elastic wave metamaterial, analyzes the inadequacies and the advantages in current research, and outlines future research prospects.
  • 超材料(metamaterial)是指人为构造的一类材料或结构, 能够实现传统自然界材料所不能实现的一些性质或功能, 比如带隙结构[1]、波导[2]、负泊松比[3]、负折射率[4]、负膨胀系数[5]、负质量[6]、超透镜[7]、声学隐身[8]以及拓扑态[9]等. 显然, 超材料的奇异性质超越了自然规律的限制, 使其获得了与自然界中材料迥然不同的超常物理性质, 极大地拓展了材料的应用范围, 并引发了诸如新一代信息技术、国防工业、新能源技术、细微加工技术等领域的重大变革, 获得了包括政府、学术界以及产业界的极大关注[10-12].

    美国国防部将超材料列为“六大颠覆性基础研究领域”之一, 并开发出能够适用于航天飞机隔热设备的具有复原功能的反弹陶瓷管[13]. 德国的研究人员开发出能够让飞机在雷达探测范围内隐身的隐身超材料. 而日本和俄罗斯也将超材料作为战斗机隐身的核心技术, 并投入大量科研经费进行持续攻关. 法国科学家利用超材料的基本思想, 提出通过在地面上打孔的方式以削弱地震波对建筑物的影响. 荷兰科学家则发明了可编程智能橡胶, 其材料性质根据挤压程度而发生相应变化[14]. 在国家的大力支持以及科研、产业人员的共同努力下, 我国在局域共振超材料理论[15]、薄膜超材料[16]、电磁超材料[17]、负属性超材料[18-19]以及非线性超材料[20-21]等领域取得了若干原创性研究成果, 并始终处在领先位置. 此外, 在电磁黑洞、声学黑洞和声学隐身等功能性超材料研制方面, 我国科研工作者也颇有建树[22-23]. 我国以光启科学为首的超材料研发制造企业的迅猛发展标志着超材料在我国正加速从理论研究转向工程应用.

    一般而言, 超材料包括基体材料和散射体材料等两类材料. 散射体材料通过一定规律嵌入/放置在基体材料中. 散射体材料的形式多种多样, 包括金属、液体、塑料甚至是空气[24]. 需要指出的是, 超材料所呈现的奇异物理性质既不取决于基体材料, 也不取决于散射体材料, 而是由二者组合而成的新结构所决定[25]. 超材料大致可以分为电磁波超材料、声学超材料、弹性超材料、结构超材料等[26-27]. 当波通过超材料时, 超材料通过阻碍[28]、吸收[29]以及集聚[30]等方式, 实现了对不同类型的波的操控.

    当波在超材料中传播时, 波与超材料结构相互作用(散射、反共振等), 从而产生能够抑制波传播的带隙结构[25]. 对于能够抑制弹性波传播的超材料带隙而言, 其形成机理主要分为固体中横波和纵波之间的波形转化与相互作用(布拉格散射带隙)以及局域振子的反共振(局域共振带隙)等两种[24]. 其中, 布拉格散射带隙的带隙频率与超材料的晶格常数以及超材料构成组分的材料参数相关, 而局域共振带隙的带隙频率依赖于局域振子的固有频率[31]. 详细来讲, 随着超材料晶格常数减小或基体材料弹性模量变大, 布拉格散射型带隙频率明显向高频区域移动[32], 换句话说, 难以使用具有支撑能力的小尺度超材料在低频范围内开启带隙结构. 幸运的是, 局域共振带隙的中心频率仅与局域振子的固有频率相关, 而机械系统的固有频率属于机械系统的基本属性, 依赖于系统的惯性与刚度特性[33]. 因此, 局域共振带隙机制的提出, 打破了超材料晶格常数与基体材料参数对带隙频率的限制, 为使用具有支撑能力的小尺度超材料开启低频带隙提供了契机[15].

    然而, 传统局域振子存在大承载能力与小刚度之间的矛盾, 局域振子固有频率依然较高, 超材料难以在更低频率范围( < 100 Hz)内开启弹性波带隙结构[34], 阻碍了超材料在低频振动控制、低频振动能量俘获、低频波导以及低频逻辑结构设计等方面的应用. 尽管获得低频弹性波带隙的理论基础明晰, 但如何创新设计超材料结构, 以实现超材料的功能性与实用性, 依然制约着低频超材料的发展. 本文拟从超材料带隙结构开启机理出发, 从超材料结构设计、带隙频率降低方法、低频带隙优化与调控策略等方面入手, 系统阐述在保证超材料承载能力以及外观尺寸等实用性的前提下开启低频弹性波带隙的基本方法, 总结低频弹性波超材料的潜在应用.

    布拉格散射和局域共振是超材料获得弹性波带隙的两种基本机制. 然而, 无论是布拉格散射型带隙, 还是局域共振型带隙, 其带隙频率都和超材料的基本结构严格相关. 换句话说, 设计合理的超材料结构, 是获得低频弹性波带隙的关键. 本节旨在总结低频弹性波( < 100 Hz)超材料的基本结构并对其进行分类, 以厘清低频弹性波带隙与超材料构型之间的关系.

    当超材料的基体为流体或者气体时, 基体仅能传播纵波. 因为超材料相邻元胞间反射波的同相叠加, 部分频率的弹性波在超材料结构中传播时将被削弱, 形成带隙结构, 其中心频率为[25]

    $$ {\omega _{\text{c}}} = \frac{c}{{2a}} $$ (1)

    式中, ca分别表示弹性波的波速以及超材料结构的晶格常数. 因基体中弹性波的波速与基体的弹性模量呈正相关, 所以减小基体弹性模量可以有效降低布拉格散射型带隙的中心频率, 在低频区域形成带隙结构[35]. 此外, 增大超材料结构的晶格常数, 也能够降低带隙的中心频率.

    当超材料的基体材料为固体时, 基体中存在横波和纵波之间的波形转化. 单个散射体在米氏散射(Mie scattering)过程中低频纵波向横波的转化是布拉格散射型带隙形成的基本原因. 需要注意的是, 该波形转化主要取决于一阶谐波的米氏散射, 且在散射峰值附近, 散射体呈刚体共振模式[36]. 若将周期性超材料简化为弹簧−质量原子链(其中基体简化为弹簧和质量块, 散射体为质量块), 其起始频率与截止频率分别表示为[37]

    $$ {\omega _{\text{B}}} \propto \sqrt {\dfrac{{2k}}{M}} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\omega _{\text{E}}} \propto \sqrt {\dfrac{{2k}}{m}} $$ (2)

    式中, mM分别表示两种简化质量块的质量; k表示连接两个质量块的弹簧的刚度. 显然, 布拉格散射型带隙的带隙位置与散射体材料和基体材料的材料参数相关.

    对于布拉格散射超材料而言, 增大散射体材料密度、降低基体材料弹性模量以及增大晶格常数均可降低带隙起始频率, 在低频范围内获得弹性波带隙结构[38]. 然而, 增大晶格常数会导致超材料整体尺寸明显增大, 严重制约超材料在工程实际中的应用. 而降低基体弹性模量或者增大散射体密度, 即减小式(2)中的k值或者增大M值, 散射体的刚体共振频率减小, 布拉格散射型带隙起始频率向低频范围移动, 能够在低频范围内获得弹性波带隙.

    通过类比DNA结构, 文献[39]提出了一种一维超材料结构. 该超材料由圆形板和螺旋结构组成, 其中螺旋结构包括两侧的螺旋线和连接螺旋线的中间连接杆. 将圆形板简化为质量块, 螺旋结构简化为弹簧, 则该DNA超材料可以等效为传统弹簧−质量原子链结构. 改变螺旋线之间的连接杆数量, 可以在较大范围内对螺旋结构的刚度进行调节, 这为在低频范围内开启带隙结构提供了潜在途径. 但是, 当超材料的刚度过低时, 超材料承受静载的能力下降, 其工程应用潜力降低.

    如果不考虑超材料的承载能力, 即超材料不承受静载时, 设计无支撑能力的超材料能够在低频范围内获得弹性波带隙. 如图1(a)所示, 通过在两个超材料元胞的连接弹簧中间安装旋转结构, 可以消除连接弹簧的变形, 使纵向刚度等于0. 该纵向刚度等于0的超材料的色散关系可以表示为[40]

    图  1  无支撑能力超材料[40-41, 43]
    Figure  1.  Supportless metamaterials[40-41, 43]
    $$ {M_{{\text{eff}}}}{\omega ^2} = 4{K_{{\text{eff}}}}{\sin ^2}\left( {qD/2} \right) $$ (3)

    式中, $ {M_{{\text{eff}}}} $$ {K_{{\text{eff}}}} $分别表示该超材料的等效质量和等效刚度; qD分别表示波数和超材料的晶格常数. 从超材料的色散曲线得出: 该纵向刚度等于0的超材料在频率区间$\left[ {0,{\kern 1 pt} {\kern 1 pt} \sqrt {2 k/m} /(2{\text{π}})} \right]\;{\text{Hz}}$内形成了布拉格散射带隙.

    构造无支持能力超材料并实现低频带隙的第二种方法为通过铰链连接质量块. 由于铰链的引入, 超材料的转动刚度等于0. 由铁木辛科梁理论可知, 弯曲波由材料的垂向运动与旋转运动等两种运动共同控制[41]. 对于传统的梁结构而言, 能够在低频范围内产生两支色散曲线, 其中一支从0开始, 另外一支从特定的起始频率开始. 因两支色散曲线分布于整个低频区域, 所以传统梁结构不能在低频范围内开启带隙结构[42].

    将传统梁结构色散方程中的转动刚度置为0并求解色散关系, 可以获得转动刚度等于0的超材料的色散曲线表达式为[41]

    $$ \left. \begin{array}{l}\omega \text{ = 0,}\;\;{\rm{1st}}\;\;{\rm{branch}}\\ \omega = \sqrt {\dfrac{{\alpha a{k^2}}}{{\rho {A_{\rm b}}}} + \dfrac{{\alpha a}}{{\rho {I_{\rm b}}}}} ,\;\;\rm 2nd\;\;\rm branch \end{array}\right\}$$ (4)

    由式(4)可知, 当转动刚度等于0时, 超材料的其中一支色散曲线与波数轴重合, 即对于任意波数k, 其对应的频率均等于0. 因此, 该超材料能够开启起始频率为0的低频弹性波带隙结构.

    无支撑能力超材料的第三种实现方式如图1(c)所示. 该类超材料主要通过切削连续均质等截面梁形成. 切削处梁截面逐渐减小, 形成锥型结构. 因锥型体最小截面处截面面积远远小于未切削均质连续体的截面面积, 所以最小截面处的弯曲刚度与扭转刚度均非常小, 这为实现低频布拉格散射带隙提供了可能. 此外, 通过超材料中局部机构位移与整体超低频波动强耦合以及在超材料中引入几何非线性等方式, 也能够开启起始频率为0的超低频弹性波带隙[44-46].

    五模超材料也称为“金属流体”, 能够对纵波和横波进行解耦, 其体积模量B与剪切模量G的比值远远大于自然界固体材料的比值[47-49]. 基于五模超材料的特殊物理性质, 北京理工大学胡更开教授团队首次实现了水声完美隐身[50]. 此外, 通过在五模超材料中引入负泊松比微结构设计, 该团队还发现了一种“反流体”的波动特性, 并实现了弹性波的宽频极化控制[51-52]. 由五模超材料所开启带隙的中心频率与材料参数的关系可以表示为[53]

    $$ {\omega _{\text{c}}} = A - B \ln \left( {E/\rho + C} \right) $$ (5)

    式中, AB表示两个负实数, C表示正实数. E$\rho $分别表示材料的弹性模量和密度. 显然, 减小弹性模量或增大材料质量密度均可以降低五模超材料的带隙中心频率, 在低频范围内开启弹性波带隙结构[54]. 例如, 将五模超材料的构成材料由铝置换成橡胶, 带隙范围由812~6430 Hz降低至1.48~11.5 Hz[53]. 此外, 使用密度较大的材料与橡胶材料形成复合五模超材料结构, 能够增大五模超材料的等效质量密度, 进一步降低带隙所处的频率范围[55-56].

    值得注意的是, 不管是由基体材料与散射体构成的传统超材料, 还是五模超材料等新型超材料, 较大晶格常数以及较低材料刚度属性是获得低频带隙的两个关键条件[25]. 然而, 晶格常数增加会明显扩大超材料的外观尺寸, 使其应用潜力下降; 降低材料刚度会影响超材料的静载承载能力, 使其成为无支撑能力结构[24]. 因此, 创新设计具有承载能力但刚度较小的布拉格散射型超材料, 是实现利用超材料进行低频振动控制的理想途径.

    Zhou等[57]结合打靶法, 率先设计了一种可增材制造的一体化超材料结构, 其示意图如图2(a)所示. 由多段梁组成的弹性连接部分的刚度与施加在该超材料两端的静载相关, 即超材料刚度随屈曲梁压缩量的变化而变化[58]. 当施加静载等于额定静载时, 超材料刚度趋近于0. 与图1所示的无支撑超材料不同的是, 准零刚度链式超材料在静载条件下出现零刚度特性, 即超材料具有良好的承受静载的能力[59]. 图2(b)表示零刚度链式超材料的带隙结构. 显然, 在一定压缩量范围内, 超材料带隙频率随超材料压缩量的增大而减小, 换句话说, 零刚度链式超材料能够在低频(约10 Hz)范围开启带隙结构.

    图  2  低刚度链式超材料及其带隙结构[57]
    Figure  2.  Low-stiffness metamaterial and corresponding band structures[57]

    2000年, Liu等[15]Science上发文, 首次提出了局域共振超材料的概念. 局域共振超材料的带隙形成机理与布拉格散射型超材料的带隙形成机理具有本质区别, 主要基于安装在基体结构上的局域共振单元的强共振特性开启带隙机构[14, 60-61]. 局域共振带隙的中心频率近似等于局域振子的共振频率. 因此, 创新设计局域振子结构, 使其具有低固有频率特性, 是利用小尺度超材料开启低频弹性波带隙的核心.

    一般而言, 由线性弹簧和质量块组成的如图3(a)所示的弹簧−质量局域共振子, 是构成局域共振超材料最简单的局域共振子构型. 利用该局域振子, 能够分析局域共振带隙的形成机理. 将弹簧−质量局域共振子周期性地安装在弹簧−质量原子链[62]、梁[63]以及板[64]上, 可形成一维和二维局域共振超材料的原理模型, 并分析纵波和弯曲波带隙的形成机理. 研究发现, 当弹性波频率靠近局域振子的固有频率时, 局域振子中质量块的动力学响应幅值增大, 弹性波在主体结构中的传播幅值减小, 超材料形成弹性波带隙结构[65]. 局域共振带隙的起始与终止频率可以由下式给出, 即[34]

    图  3  不同类型的局域振子结构[73, 79-80, 85-87]
    Figure  3.  Schematic diagrams of different types of local resonators[73, 79-80, 85-87]
    $$ {\omega _{\text{B}}} \propto \sqrt {\frac{{{k_{\text{R}}}}}{{{m_{\text{R}}}}}} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\omega _{\text{E}}} \propto {\omega _{\text{B}}}\sqrt {1 + \frac{{{m_{\text{R}}}}}{M}} $$ (6)

    式中, kRmR分别表示局域振子的刚度和质量; M表示超材料元胞中基体的质量. 显然, 局域共振带隙的频率与宽度均与局域振子的属性相关, 打破了布拉格散射带隙对超材料晶格常数以及基体材料属性的依赖, 为利用小尺度且具有支撑能力的基体结构在低频区域内开启带隙结构提供了潜在途径. 然而, 就线性弹簧−质量块局域振子而言, 其外观尺寸较大, 且线性弹簧存在承载和低刚度之间的矛盾, 导致该局域振子很难应用于工程实际. 因此, 开发新型局域振子结构, 是推动超材料由理论研究转向工程应用的必然趋势.

    通过弹性材料或者弹性结构替代线性弹簧, 可以构造紧凑型局域振子. 如图3所示, 用于设计局域振子的弹性材料包括橡胶[66-72]、薄膜[73-74]、悬臂梁[75]以及聚合物混凝土[76]等. 使用弹性结构替代线性弹簧的一个优势在于弹性材料可以同时在多个方向上提供回复力. 因此, 由弹性结构构成的局域振子能够开启不同类型的弹性波带隙, 例如纵波带隙、弯曲波带隙以及扭转波带隙等[77]. 需要指出的是, 若使用球摆类结构构造超材料元胞, 也可以在同一超材料中获得多类型低频弹性波带隙, 从而实现对不同种类的低频弹性波进行控制[78].

    除开弹性结构外, 将弹性基体进行切削镂空以形成特定的几何结构, 也是构造紧凑型局域振子的一种方法[79-84]. 因连接局域振子质量的基体被镂空, 如图3(c)所示, 其刚度远远小于完整连续体的刚度, 局域振子的固有频率较低, 超材料能够在低频范围内开启弹性波带隙结构. 然而, 无论是由线性弹簧和质量块组成的传统型局域振子, 亦或是由弹性材料或弹性结构以及质量块组成的紧凑型局域振子, 都存在支撑能力与低刚度之间的矛盾. 换句话说, 当局域振子质量块质量较大时, 连接质量块的弹性元件需要较大的刚度以支撑质量块, 局域振子固有频率难以降低. 由于局域共振型超材料的带隙频率与局域振子的属性相关, 所以由普通弹性元件和质量块组成的局域共振超材料难以在低频尤其是超低频范围内开启弹性波带隙.

    固有频率是机械系统的固有属性, 与系统刚度和惯性相关[88]. 系统刚度一般用以评估系统抵抗变形的能力. 当系统变形增大, 所施加的力也增加时, 此时称系统具有正刚度特性. 相反, 当系统变形增大, 所施加的力减小时, 称系统具有负刚度特性. 将正负刚度并联组合, 利用负刚度机构的负刚度特性抵消正刚度元件的刚度值, 则组合系统的刚度值较正刚度系统刚度值明显减小[89]. 通过参数设计, 正负刚度并联组合系统的刚度值在静平衡位置处等于0, 在静平衡位置周围趋近于0. 此时, 该组合系统称为准零刚度系统, 其静力学特性如图4所示[90-91].

    图  4  准零刚度系统的静力学特性[92]
    Figure  4.  Static characters of quasi-zero-stiffness system[92]

    设计具有低固有频率的局域振子是利用超材料开启低频弹性波带隙的核心. 但是, 单一弹性元件难以达到承受静载与降低动刚度之间的统一, 导致所构成的局域振子固有频率较高, 难以开启低频弹性波带隙[89-93]. 准零刚度系统的提出, 为创新设计低频局域振子提供了契机. 2017年, Zhou等[34]率先提出准零刚度局域振子的概念, 并基于准零刚度局域振子设计了准零刚度局域共振超材料梁. 准零刚度局域振子的刚度−位移表达式可以表示为

    $$ {K_{{\text{QZS}}}}\left( x \right) = {k_{\text{p}}} - \left( {1 - \gamma } \right)P\left( x \right) $$ (7)

    式中, kp表示局域振子中正刚度元件的刚度值; $\gamma $表示局域振子在静平衡位置处的刚度值与正刚度元件刚度值kp的比值, 其大小由负刚度机构的参与程度决定; P(x)表示与运动位移相关的变量. 显然, 准零刚度局域振子的刚度值可以通过改变$\gamma $的大小, 亦即负刚度机构的参与程度来进行调节.

    对于准零刚度局域振子而言, 负刚度机构是决定其外观尺寸和力学特性最核心的部分. 目前, 包括斜弹簧机构[93-97]、X型机构[98]、半球−半球机构[99]、凸轮−滚子机构[100]以及永磁铁环[101]等机械结构均可以实现负刚度特性并抵消正刚度元件(主要由线性螺旋弹簧和橡胶块组成)的刚度值以实现准零刚度特性, 如图5(a)所示. 但是, 由于正刚度机构与负刚度机构均由机械结构组成, 准零刚度局域振子外观尺寸较大, 自重较重, 导致所构成的准零刚度局域共振超材料尺寸较大. 此外, 正负刚度机构并联组合会引入难以避免的机械接触, 引起机械摩擦, 影响超材料带隙结构的振动抑制性能.

    为了突破机械准零刚度局域振子的缺陷, Cai等[92]利用两对折叠梁和两对屈曲梁, 设计了如图5(b)-I所示的可快速增材制造的结构化准零刚度局域振子. 在该准零刚度局域振子中, 折叠梁为局域振子提供正刚度, 屈曲梁提供负刚度, 折叠梁与屈曲梁直接相连, 避免了冗余的机械接触, 减小了机械摩擦对超材料带隙结构的影响. 另外, 相较于机械准零刚度局域振子, 结构化准零刚度局域振子质量更轻, 整体尺寸更小, 更有利于设计紧凑型准零刚度局域共振超材料.

    图  5  准零刚度局域振子基本构型[57, 92, 94, 98-103]
    Figure  5.  Schematic diagrams of different types of quasi-zero-stiffness local resonators[57, 92, 94, 98-103]

    尽管由折叠梁和屈曲梁构成的准零刚度局域振子已经解决了机械式准零刚度局域振子的诸多缺陷, 但是该局域振子依然由正负刚度元件组成, 结构依然较为复杂. 随着对结构化准零刚度局域共振子结构的持续性改进, 正刚度元件和负刚度元件融为一体, 改由多段柔性梁实现准零刚度结构[57], 如图5(b)-II所示. 更为重要的是, 该型准零刚度局域振子的静力学特性与多段梁的压缩量相关, 这为调控局域共振超材料的带隙结构提供了理论支撑[103].

    由式(7)可知, 机械准零刚度局域振子的刚度值与负刚度机构的参与程度, 亦即刚度系数$\gamma $相关[34]. 而结构化准零刚度局域振子的静力学特性则与多段梁的压缩量相关[103-105]. 因局域共振超材料的带隙频率与局域振子的刚度相关, 所以局域振子的参数对准零刚度局域共振超材料的带隙具有明显影响. 图6表示刚度系数与多段梁压缩量对准零刚度超材料带隙结构的影响. 显然, 随着刚度系数的减小, 即负刚度机构参与程度增加, 准零刚度超材料的带隙频率向低频区域移动, 这与多段梁压缩量对准零刚度超材料带隙结构的影响完全一致, 即随着多段梁压缩量的增加, 超材料带隙频率向低频区域移动. 综上所述, 准零刚度超材料能够在保证承载能力的前提下, 在低频区域内开启弹性波带隙.

    图  6  准零刚度超材料的带隙结构图[95, 103]
    Figure  6.  Band structures of quasi-zero-stiffness metamaterials[95, 103]

    增大布拉格散射型超材料的晶格常数或改变构成超材料的基体与散射体的材料参数, 能够在低频范围内开启低频弹性波带隙结构[106]. 但是, 无论是增大超材料的晶格常数, 还是降低超材料基体材料的刚度, 均会制约超材料的工程应用. 局域共振型超材料的提出, 打破了布拉格散射带隙的带隙频率与晶格常数、基体材料参数之间的依赖关系, 成功利用具有承载能力的小尺度超材料结构开启了低频弹性波带隙[107]. 然而, 随着局域共振带隙频率向低频区域移动, 带隙宽度变窄, 带隙内弹性波衰减效果减弱[108]. 此外, 由于大部分超材料都是由不具备调控功能的机械结构组成, 低频带隙不易调控, 导致超材料的应用潜力下降. 因此, 发展低频带隙优化与调控方法, 对推进超材料的研究具有重要意义.

    将低频范围内的单个带隙拓宽以及在低频范围内开启多个带隙是在低频范围内获得超宽弹性波带隙的两种主要方法. 就局域共振型超材料而言, 其带隙结构与超材料元胞内局域振子的固有频率相关. 因此, 创新设计局域振子结构或增加局域振子的自由度, 均可以拓宽低频带隙宽度. 目前, 设计多自由度局域振子[109-113]、在局域振子中引入惯容器[114-118]、在不同元胞的局域振子间建立耦合[119-123]以及通过依次改变质量或刚度的方式建立梯度局域振子[124-126]是拓宽低频弹性波带隙的主要方式. 当在局域振子中加入惯容器时, 局域振子的等效质量可以表示为[115]

    $$ m_{{\text{eff}}}^{{\text{PI}}} = {m_{{\text{st}}}} - \frac{{m_2^2}}{{{m_2} + \left( {J - \dfrac{{{m_2}}}{{{\varOmega ^2}}}} \right)}} $$ (8)

    式中, $ {m_{{\text{st}}}} $m2分别表示元胞的质量与局域振子的质量; J表示惯容系数. 在局域振子中加入惯容器可以明显扩大等效质量小于0的频率区间, 即低频带隙宽度增加.

    当增加局域振子的自由度时, 超材料的传递率曲线在低频区域内出现了多个衰减峰值, 即超材料在多个频率区域内开启了带隙结构, 在更大的频率范围内对作用于超材料上的弹性波起到了衰减作用[127]. 此外, 增加局域共振超材料中局域共振子的个数[128]以及在超材料中引入阻尼[129]也可以拓宽低频范围内带隙的宽度.

    对超材料低频带隙进行优化的第二个方面为增强超材料在低频范围内对弹性波的衰减效果. 目前, 增强超材料带隙内弹性波的衰减性能以及削弱超材料通带频率区域的弹性波共振峰值是两种优化超材料弹性波衰减性能的主要方法. 就增强超材料带隙范围内弹性波衰减效果而言, 增大局域振子质量块的质量[92]和局域振子数量[100]是两种潜在的途径. 然而, 超材料在低频区域内所形成的带隙频率范围较低频区域内的通带频率范围较小, 也就是说, 对一般超材料而言, 通带频率区域在低频区域的占比较大[130]. 此外, 当弹性波频率处于通带内时, 弹性波响应幅值被放大, 不利于弹性波控制. 因此, 对通带内的弹性波传递性能进行优化(削减峰值), 能够有效提升超材料在低频范围内整体的弹性波衰减性能.

    研究发现, 将传统局域振子中的线性弹簧更换为非线性弹簧所构成的非线性超材料, 能够产生桥接耦合现象[131]. 具体来说, 该类非线性超材料能够衰减带隙频率范围外通带区域内的弹性波传递幅值, 这样的通带区域被称为混沌带隙[21, 132-135]. 显然, 混沌带隙的提出, 为利用超材料在超宽频率范围操控弹性波提供了潜在途径, 具有较为重要的工程应用价值. 然而, 截止到目前, 由非线性超材料桥接耦合效应诱发的混沌带隙与外激励幅值相关, 限制了该类超材料的工程应用. 为打破桥接耦合效应受外激励幅值的限制, 研究学者通过双级谐振线性超材料也成功实现了桥接耦合效应, 在宽频带内实现了对弹性波的控制[136].

    局域共振型超材料的带隙频率与局域振子的固有频率相关, 而固有频率属于局域振子的固有属性, 取决于惯性属性(质量、转动惯量)与刚度属性(垂向刚度、扭转刚度)[88]. 因此, 局域共振型低频带隙的调控方法主要包括基于局域共振子惯性的调控方法与基于局域共振子刚度的调控方法等两种.

    目前, 在局域振子中引入惯性放大机构以及通过主动调控局域振子的质量是改变局域振子惯性属性来调控局域共振低频带隙的两种主要方法. 惯性放大机构能够产生惯性放大效应, 能够通过小质量产生较大惯性力[137]. 以弹簧−质量系统分析惯性放大机构, 获得惯性放大机构的等效质量为[138]

    $$ {m_{{\text{eff}}}} = 2m + \frac{{{m_{\text{a}}}}}{{{{\tan }^2}\theta }} $$ (9)

    式中, mma分别表示主结构质量和惯性放大机构的质量; $\theta $表示惯性放大机构的刚性连接杆与主结构之间的夹角. 显然, 当夹角$\theta \in \left( {0,\text{π} /4} \right)$时, 引进惯性放大机构的机械系统的等效质量大于系统中质量块的质量之和, 换句话说, 该机械系统的惯性力通过机械结构被放大了.

    将如图7所示的由惯性放大机构组成的元胞进行周期性排布, 获得了惯性放大超材料[139-141]. 在系统反共振频率周围, 惯性放大机构产生的惯性力能够抵消主系统的弹性力, 所以惯性放大机构能够在低频范围内开启弹性波带隙结构[142]. 更为重要的是, 通过改变惯性放大机构的几何参数, 能够在较大范围内对系统的惯性力进行调节, 这为调控超材料的带隙位置提供了潜在途径.

    图  7  惯性放大机构示意图及其带隙结构[95, 138-141]
    Figure  7.  Schematic diagrams of inertial amplification and corresponding band structure[95, 138-141]

    惯性放大机构除单独构成元胞以形成超材料外, 还能够同准零刚度局域振子进行结合以形成具有惯性放大效应的准零刚度局域振子, 其示意图如图7(b)-I所示. 将惯性放大准零刚度局域振子周期性地安装在薄梁上形成超材料梁, 开启的弹性波带隙结构如图7(b)-II所示. 显然, 引入具有小质量块的惯性放大机构能够明显降低弹性波带隙的频率[95].

    尽管由惯性放大机构构成超材料或者在局域振子中引入惯性放大机构能够降低和调节弹性波带隙频率, 但是大部分惯性放大机构仍属于被动机械结构, 不便于对低频带隙进行主动或半主动调控. 目前, 通过主动/半主动方式改变局域振子质量以调控带隙的研究, 主要集中在如何快速在基体和局域共振子中转移部分质量. 而电磁铁和泵是两种实现质量转移的主要方式. 详细来讲, 当有电流通过电磁铁时, 连接基体板的两块电磁铁相互粘连. 当关闭电源后, 电磁铁中没有电流通过, 相互粘连的电磁铁脱开, 达到改变局域振子质量的目的[143]. 将超材料基体和局域振子设计成空腔, 并在空腔内填充部分液体. 使用泵实现液体在局域振子空腔和基体空腔之间的切换, 也可以实现局域振子质量的半主动调控[143].

    通过主动/半主动或者被动的方式, 调节超材料局域振子的刚度, 也能够对低频弹性波带隙进行调控. 目前, 通过被动方式调节局域振子刚度的途径主要包括在局域振子中引入负刚度机构以抵消局域振子弹性元件的刚度值[144]、镂空超材料基体以减小局域振子刚度[84]以及调节局域振子结构的压缩量[103]等. 研究结果显示, 通过被动调节局域振子刚度的方式能够降低超材料的弹性波带隙频率, 有利于在低频范围内开启带隙结构. 但是, 当被动局域振子设计完成后, 其结构难以更改, 局域振子刚度难以调节, 不便于超材料低频带隙的快速调控.

    通过调节局域振子刚度的方式调控超材料低频带隙的第二种方法为构造主动/半主动型超材料. 几种典型的主动/半主动超材料结构示意图如图8所示. 按照控制变量对主动/半主动型超材料进行分类, 可以分为电控类超材料[14, 145-150]、气压控制类超材料[151-152]以及温控类超材料[153-156]. 常见的电控变量主要包括电压、电流、电阻以及电感. 通常, 压电材料、电磁机构以及磁流变弹性体是超材料执行电控变量以控制局域振子刚度的主要执行元器件. 详细来讲, 当在压电材料或磁流变弹性体上作用电场后, 压电材料因逆压电效应产生变形, 而磁流变弹性体的弹性模量发生变化, 实现对超材料带隙结构的调控[14, 157-158]. 而对于电磁机构而言, 其基本原理为通过电磁感应原理将电能转化为机械能, 并辅以合适的机械结构实现对局域振子刚度的调节[130]. 需要指出的是, 如图8(a)所示的压电材料也是构造智能超材料的主要元器件, 其力学性能可以通过调节电控变量进行显著调节.

    图  8  基于局域振子刚度调控低频带隙的超材料[14, 151, 153]
    Figure  8.  Metamaterials capable of opening tunable band structure which adjusted by resonator stiffness[14, 151, 153]

    图8(b)所示, 当使用气压作为控制变量对超材料的低频弹性波带隙进行调控时, 其执行元件为气囊. 当气囊内气压增加时, 气囊刚度变大, 局域振子固有频率增加, 超材料带隙向高频范围移动. 相反, 当气囊内气压减小时, 气囊刚度变小, 超材料弹性波带隙向低频范围移动[152]. 温控超材料的执行元器件主要为形状记忆合金, 其示意图如图8(c)所示. 通过形状记忆合金调控超材料低频弹性波带隙的基本原理为当加载在形状记忆合金上的温度发生变化时, 形状记忆合金的组织发生马氏体相与奥氏体相之间的相互转化. 此时, 形状记忆合金的弹性模量可以表示为[153]

    $$ E\left( \zeta \right) = {E_{\text{A}}} + \zeta \left( {{E_{\text{M}}} - {E_{\text{A}}}} \right) $$ (10)

    式中, $ \zeta $表示形状记忆合金中马氏体所占比例, 其值与马氏体相变开始温度、马氏体相变截止温度、奥氏体相变开始温度、奥氏体相变截止温度以及加载在形状记忆合金上的温度等参数相关; EAEM分别表示形状记忆合金完全由奥氏体以及完全由马氏体组成时的弹性模量. 显然, 当加载在形状记忆合金上的温度发生变化时, 形状记忆合金的弹性模量发生变化, 导致由形状记忆合金构成的局域振子的刚度发生变化, 进而对超材料的低频弹性波进行调控.

    当弹性波在超材料结构中传播时, 弹性波与基体/散射体或局域共振单元相互作用, 超材料开启弹性波带隙, 处于带隙范围内的弹性波传播受到抑制[159]. 目前, 超材料已经被用于输流管道的流致振动抑制[160-161]、舰船动力设备与辅助设备产生的低频机械减振[93, 162]、太阳能电池板低频减振[163]、汽车低频减振[164-165]以及蜂巢类轻质结构低频抑振[166]等. 研究结果显示, 工程结构中振动传播的幅值衰减超过20 dB, 有效减小了振动对工程结构的影响.

    局域振子的反共振效应是局域共振型超材料产生带隙的本质原因. 当作用在超材料上的弹性波的频率处在带隙内, 即外激励频率接近局域振子的固有频率时, 局域振子动力学响应较大, 超材料能够对机械能量进行俘获[167]. 使用超材料俘获振动能量的两种典型结构如图9(b)所示. 目前, 摩擦纳米发电机[168]、电磁发电机[169]以及压电材料[86]是同超材料相结合以俘获振动能量的主要能量转化机构. 研究结果显示, 将超材料与俘能材料/结构相结合以构成俘能超材料, 能够俘获频率在100 Hz附近的振动能量, 且输出电压可以达到10 V以上.

    超材料除可以用于振动抑制和振动能量俘获以外, 还可以执行逻辑运算以实现信息处理[83]. 一般而言, 力学超材料中具有两种不同几何形状的元胞可以用来表示二进制状态0和1. 改变元胞间的相互作用, 力学超材料可以实现不同的逻辑门和信号传输[170]. 目前, 可用于构造力学逻辑超材料的元胞形式包括螺旋弹簧[83]、双稳态弹性结构[171]、导电聚合物[172]以及屈曲梁[170]等. 无论构成逻辑超材料的结构形式如何, 已经提出的超材料都能够实现基本的逻辑运算, 并为实现软体机器人的相关机械逻辑奠定了理论基础. 需要指出的是, 超材料还有诸如构造波导器件[173]、实现声学黑洞[174]等众多应用.

    图  9  超材料的部分应用[83, 93, 168-169, 175]
    Figure  9.  The application of metamaterials[83, 93, 168-169, 175]

    超材料的提出, 引发了包括信息技术、国防工业、新能源技术以及细微加工等诸多领域的重大变革. 带隙是超材料的关键特征之一, 被广泛用于弹性波操控与利用. 超材料带隙结构与超材料的晶格常数、基体与散射体材料属性以及局域振子属性相关, 如何利用小尺度超材料在低频范围内开启带隙结构是扩大超材料在低频弹性波操控与利用领域的关键科学问题之一. 本文在简要介绍超材料的带隙开启机理与影响因素后, 详细总结了能够在100 Hz附近频率区域开启带隙的布拉格散射型超材料、传统局域共振型超材料以及准零刚度超材料, 并厘清了低频弹性波带隙频率与超材料参数之间的关系. 低频弹性波带隙的优化策略和调控方法也在本文中进行了详细阐述. 最后, 从低频振动控制方法、低频振动能量俘获以及逻辑运算等三个方面分析了超材料的潜在应用. 随着对超材料研究的深入, 低频超材料的研究将逐步完善, 并在多个领域实现工程应用.

    低频弹性波超材料是近十年来关于超材料研究的新方向, 目前已经在结构设计、数学模型建立以及潜在应用等方面取得了丰硕的研究成果. 但是, 低频超材料距离工程应用还存在诸如承载能力小、结构不够紧凑、非线性模型难以建立与求解等多方面的不足. 因此, 低频超材料的发展还面临如下挑战.

    (1)结构化低刚度且具有承载能力的局域振子的创新设计. 传统局域振子存在承载能力与低刚度之间的矛盾, 难以开启低频带隙. 准零刚度超材料为设计具有承载能力的低频带隙超材料提供了契机. 但是, 目前大部分准零刚度局域振子由机械结构组成, 结构复杂、尺寸较大、自重较重, 难以构造紧凑轻质的超材料. 因此, 基于拓扑优化方法, 创新设计具有承载能力的结构化小刚度局域振子, 是低频超材料进一步发展的关键.

    (2)非线性超材料的数学建模与分析方法. 传统局域振子由线性/准线性弹性元件提供回复力, 其回复力−位移关系表达式较为简单, 可使用传递矩阵法和平面波展开方法等推导超材料的色散关系, 获得其带隙结构. 但是, 真实局域振子中存在诸如间隙、碰撞、干摩擦、材料弹塑性、结构大变形、几何非线性等非线性因素. 如何对含有非线性的超材料进行数学建模, 并求解超材料的高维非线性方程, 是设计超材料并评估其性能的核心问题.

    (3)低频弹性波带隙结构的优化与主动调控. 对局域共振带隙而言, 其带隙宽度随带隙频率的下降而变窄, 带隙内超材料对弹性波的衰减效果减弱. 此外, 目前对低频弹性波带隙的主动调控方法较少, 难以在低频范围内对弹性波带隙进行大范围的主动调控. 因此, 拓宽低频带隙宽度, 强化带隙内弹性波衰减效果以及对低频带隙位置进行主动调控是拓展超材料在振动抑制方面应用的另一关键性问题.

  • 图  1   无支撑能力超材料[40-41, 43]

    Figure  1.   Supportless metamaterials[40-41, 43]

    图  2   低刚度链式超材料及其带隙结构[57]

    Figure  2.   Low-stiffness metamaterial and corresponding band structures[57]

    图  3   不同类型的局域振子结构[73, 79-80, 85-87]

    Figure  3.   Schematic diagrams of different types of local resonators[73, 79-80, 85-87]

    图  4   准零刚度系统的静力学特性[92]

    Figure  4.   Static characters of quasi-zero-stiffness system[92]

    图  5   准零刚度局域振子基本构型[57, 92, 94, 98-103]

    Figure  5.   Schematic diagrams of different types of quasi-zero-stiffness local resonators[57, 92, 94, 98-103]

    图  6   准零刚度超材料的带隙结构图[95, 103]

    Figure  6.   Band structures of quasi-zero-stiffness metamaterials[95, 103]

    图  7   惯性放大机构示意图及其带隙结构[95, 138-141]

    Figure  7.   Schematic diagrams of inertial amplification and corresponding band structure[95, 138-141]

    图  8   基于局域振子刚度调控低频带隙的超材料[14, 151, 153]

    Figure  8.   Metamaterials capable of opening tunable band structure which adjusted by resonator stiffness[14, 151, 153]

    图  9   超材料的部分应用[83, 93, 168-169, 175]

    Figure  9.   The application of metamaterials[83, 93, 168-169, 175]

  • [1]

    Martínez-Sala R, Sancho J, Sánchez JV, et al. Sound attenuation by sculpture. Nature, 1995, 378(6554): 241-241

    [2]

    Nadkarni N, Arrieta AF, Chong C, et al. Unidirectional transition waves in bistable lattices. Physical Review Letters, 2016, 116(24): 244501 doi: 10.1103/PhysRevLett.116.244501

    [3] 秦浩星, 杨德庆, 张相闻. 负泊松比声学超材料基座的减振性能研究. 振动工程学报, 2017, 30(6): 1012-1021 (Qin Haoxing, Yang Deqing, Zhang Xiangwen. Vibration reduction of auxetic acoustic metamaterial mount. Journal of Vibration Engineering, 2017, 30(6): 1012-1021 (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2017.06.015
    [4]

    Cubukcu E, Aydin K, Ozbay E, et al. Electromagnetic waves: Negative refraction by photonic crystals. Nature, 2003, 423: 604-605 doi: 10.1038/423604b

    [5]

    Miller W, Smith CW, MacKenzie DS, et al. Negative thermal expansion: A review. Journal of Materials Science, 2009, 44: 5441-5451 doi: 10.1007/s10853-009-3692-4

    [6]

    Dwivedi A, Banerjee A, Adhikari S, et al. Optimal electromechanical bandgaps in piezo-embedded mechanical metamaterials. International Journal of Mechanics and Materials in Design, 2021, 17(2): 419-439 doi: 10.1007/s10999-021-09534-0

    [7]

    Zhu X, Liang B, Kan W, et al. Acoustic cloaking by a superlens with single-negative materials. Physical Review Letters, 2011, 106: 014301 doi: 10.1103/PhysRevLett.106.014301

    [8]

    Ball P. New lessons for stealth technology. Nature Materials, 2021, 20: 4 doi: 10.1038/s41563-020-00885-1

    [9]

    Yan M, Lu J, Li F, et al. On-chip valley topological materials for elastic wave manipulation. Nature Materials, 2018, 17(11): 993-998 doi: 10.1038/s41563-018-0191-5

    [10] 马天雪, 苏晓星, 董浩文等. 声光子晶体带隙特性与声光耦合作用研究综述. 力学学报, 2017, 49(4): 743-757 (Ma Tianxue, Su Xiaoxing, Dong Haowen, et al. Review of bandgap characteristics and acousto-optical coupling in phoxonic crystals. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 743-757 (in Chinese) doi: 10.6052/0459-1879-17-130
    [11] 侯秀慧, 吕游, 周世奇等. 新型负刚度吸能结构力学特性分析. 力学学报, 2021, 53(7): 1940-1950 (Hou Xiuhui, Lü You, Zhou Shiqi, et al. Mechanical properties analysis of a new energy absorbing structure with negative stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950 (in Chinese) doi: 10.6052/0459-1879-21-083
    [12] 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性. 力学学报, 2019, 51(4): 1110-1121 (Qiu Hai, Fang Hongbin, Xu Jian. Nonlinear dynamical characteristics of a multi-stable series origami structure. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121 (in Chinese) doi: 10.6052/0459-1879-19-115
    [13] 陈焱. 基于机构运动的大变形超材料. 机械工程学报, 2020, 56(19): 2-13 (Chen Yan. Review on kinematic metamaterials. Journal of Vibration Engineering, 2020, 56(19): 2-13 (in Chinese) doi: 10.3901/JME.2020.19.002
    [14] 袁毅, 游镇宇, 陈伟球. 压电超构材料及其波动控制研究: 现状与展望. 力学学报, 2021, 53(8): 2101-2116 (Yuan Yi, You Zhenyu, Chen Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116 (in Chinese) doi: 10.6052/0459-1879-21-198
    [15]

    Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science, 2000, 289(5485): 1734-1736 doi: 10.1126/science.289.5485.1734

    [16]

    Yang Z, Mei J, Yang M, et al. Membrane-type acoustic metamaterial with negative dynamic mass. Physical Review Letters, 2008, 101: 204301 doi: 10.1103/PhysRevLett.101.204301

    [17]

    Wu R, Cui T. Microwave metamaterials: from exotic physics to novel information systems. Frontiers of Information Technology and Electronic Engineering, 2020, 21(1): 4-26 doi: 10.1631/FITEE.1900465

    [18]

    Shanshan Y, Xiaoming Z, Gengkai H. Experimental study on negative effective mass in a 1D mass-spring system. New Journal of Physics, 2008, 10: 043020 doi: 10.1088/1367-2630/10/4/043020

    [19]

    Zhu R, Liu XN, Hu GK, et al. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nature Communications, 2014, 5: 5510 doi: 10.1038/ncomms6510

    [20]

    Wang G, Wen X, Wen J, et al. Two-dimensional locally resonant phononic crystals with binary structures. Physical Review Letters, 2004, 93: 154302 doi: 10.1103/PhysRevLett.93.154302

    [21]

    Fang X, Wen J, Bonello B, et al. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nature Communications, 2017, 8(1): 1288 doi: 10.1038/s41467-017-00671-9

    [22] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展. 机械工程学报, 2018, 54(13): 1-14 (Yu Jingjun, Xie Yan, Pei Xu. State-of-art of metamaterials with negative Poisson’s ratio. Journal of Vibration Engineering, 2018, 54(13): 1-14 (in Chinese) doi: 10.3901/JME.2018.13.001
    [23] 刘敏, 张斌珍, 段俊萍. 一种基于超材料的宽频带定向性微带天线. 机械工程学报, 2018, 54(9): 64-68 (Liu Min, Zhang Binzhen, Duan Junping. Broadband and directional microstrip antenna based on metamaterials. Journal of Vibration Engineering, 2018, 54(9): 64-68 (in Chinese) doi: 10.3901/JME.2018.09.064
    [24]

    Ma G, Sheng P. Acoustic metamaterials : From local resonances to broad horizons. Science Advances, 2016, 2: e1501595 doi: 10.1126/sciadv.1501595

    [25] 温熙森, 温激鸿, 郁殿龙等. 声子晶体. 北京: 国防工业出版社, 2009

    Wen Xisen, Wen Jihong, Yu Dianlong, et al. Phononic Crystals. Beijing: National Defence Industry Press, 2009 (in Chinese)

    [26]

    Zouhdi S, Sihvola A, Vinogradov AP. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. Dordrecht: Springer Science & Business Media, 2008

    [27]

    Kadic M, Schittny R, Bückmann T, et al. Hall-effect sign inversion in a realizable 3D metamaterial. Physical Review X, 2015, 5: 021030 doi: 10.1103/PhysRevX.5.021030

    [28]

    Wang Y, Zhao W, Rimoli JJ, et al. Prestress-controlled asymmetric wave propagation and reciprocity-breaking in tensegrity metastructure. Extreme Mechanics Letters, 2020, 37: 100724 doi: 10.1016/j.eml.2020.100724

    [29]

    Ji JC, Luo Q, Ye K. Vibration control based metamaterials and origami structures: A state-of-the-art review. Mechanical Systems and Signal Processing, 2021, 161: 107945 doi: 10.1016/j.ymssp.2021.107945

    [30]

    Tang L, Cheng L. Impaired sound radiation in plates with periodic tunneled acoustic black holes. Mechanical Systems and Signal Processing, 2020, 135: 106410 doi: 10.1016/j.ymssp.2019.106410

    [31]

    Askari M, Hutchins DA, Thomas PJ, et al. Additive manufacturing of metamaterials: A review. Additive Manufacturing, 2020, 36: 101562 doi: 10.1016/j.addma.2020.101562

    [32]

    Jia Z, Chen Y, Yang H, et al. Designing phononic crystals with wide and robust Band gaps. Physical Review Applied, 2018, 9: 044021 doi: 10.1103/PhysRevApplied.9.044021

    [33] 肖庆雨, 周加喜, 徐道临等. 一种六自由度准零刚度隔振平台. 振 动 与 冲 击, 2019, 38(1): 258-264 (Xiao Qingyu, Zhou Jiaxi, Xu Daolin, et al. A 6-DOF quasi-zero stiffness vibration isolation platform. Journal of Vibration and Shock, 2019, 38(1): 258-264 (in Chinese)
    [34]

    Zhou J, Wang K, Xu D, et al. Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. Journal of Applied Physics, 2017, 121: 044902 doi: 10.1063/1.4974299

    [35] 冯青松, 杨舟, 梁玉雄等. 双周期声子晶体梁弯曲振动带隙特性分析. 噪声与振动控制, 2020, 40(3): 1-8 (Feng Qingsong, Yang Zhou, Liang Yuxiong, et al. Study on bending vibration band gap characteristics of a double periodic phononic crystal beam. Noise and Vibration Control, 2020, 40(3): 1-8 (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.03.001
    [36]

    Maslov K, Kinra VK, Henderson BK. Elastodynamic response of a coplanar periodic layer of elastic spherical inclusions. Mechanics of Materials, 2000, 32(12): 785-795 doi: 10.1016/S0167-6636(00)00046-6

    [37]

    Jensen JS. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. Journal of Sound and Vibration, 2003, 266(5): 1053-1078 doi: 10.1016/S0022-460X(02)01629-2

    [38] 邱学云, 胡家光, 唐启祥. 填充率对一维二元声子晶体杆带隙的影响. 重庆师范大学学报(自然科学版), 2016, 33(2): 113-117 (Qiu Xueyun, Hu Jiaguang, Tang Qiqiang, et al. Influences of filling ratio on the rod-shaped structure of one-dimensional two-component phononic crystals. Journal of Chongqing Normal University (Natural Science), 2016, 33(2): 113-117 (in Chinese)
    [39]

    Zheng B, Xu J. Mechanical logic switches based on DNA-inspired acoustic metamaterials with ultrabroad low-frequency band gaps. Journal of Physics D: Applied Physics, 2017, 50: 465601 doi: 10.1088/1361-6463/aa8b08

    [40]

    Oh JH, Choi SJ, Lee JK, et al. Zero-frequency Bragg gap by spin-harnessed metamaterial. New Journal of Physics, 2018, 20: 083035 doi: 10.1088/1367-2630/aada38

    [41]

    Oh JH, Assouar B. Quasi-static stop band with flexural metamaterial having zero rotational stiffness. Scientific Reports, 2016, 6: 33410 doi: 10.1038/srep33410

    [42]

    Zhang YY, Wu JH, Hu GZ, et al. Flexural wave suppression by an elastic metamaterial beam with zero bending stiffness. Journal of Applied Physics, 2017, 121: 134902 doi: 10.1063/1.4979686

    [43]

    Park S, Jeon W. Ultra-wide low-frequency band gap in a tapered phononic beam. Journal of Sound and Vibration, 2021, 499: 115977 doi: 10.1016/j.jsv.2021.115977

    [44] 王倚天, 赵建雷, 张铭凯等. 含机构位移模式的超材料低频宽带波动控制. 科学通报, 2021, 66: 1-11 (Wang Yitian, Zhao Jianlei, Zhang Mingkai, et al. Mechanism-based metamaterials for low-frequency broadband wave control. Chinese Science Bulletin, 2021, 66: 1-11 (in Chinese) doi: 10.1360/tb-2021-0518
    [45]

    Bae MH, Oh JH. Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mechanical Systems and Signal Processing, 2022, 170: 108832 doi: 10.1016/j.ymssp.2022.108832

    [46]

    Ghavanloo E, El-Borgi S, Fazelzadeh SA. Formation of quasi-static stop band in a new one-dimensional metamaterial. Archive of Applied Mechanics, 2022, https: //doi.org/10.1007/s00419-022-02146-w

    [47]

    Wang Z, Chu Y, Cai C, et al. Composite pentamode metamaterials with low frequency locally resonant characteristics. Journal of Applied Physics, 2017, 122: 025114 doi: 10.1063/1.4993904

    [48]

    Kadic M, Bückmann T, Stenger N, et al. On the practicability of pentamode mechanical metamaterials. Applied Physics Letters, 2012, 100: 191901 doi: 10.1063/1.4709436

    [49] 陈毅, 刘晓宁, 向平等. 五模材料及其水声调控研究. 力学进展, 2016, 46: 201609 (Chen Yi, Liu Xiaoning, Xiang Ping, et al. Pentamode material for underwater acoustic wave control. Advances in Mechanics, 2016, 46: 201609 (in Chinese) doi: 10.6052/1000-0992-16-010
    [50]

    Chen Y, Zheng M, Liu X, et al. Broadband solid cloak for underwater acoustics. Physical Review B, 2017, 95: 180104(R doi: 10.1103/PhysRevB.95.180104

    [51]

    Zheng M, Liu X, Chen Y, et al. Theory and realization of nonresonant anisotropic singly polarized solids carrying only shear waves. Physical Review Applied, 2019, 12: 014027 doi: 10.1103/PhysRevApplied.12.014027

    [52]

    Zheng M, Park C Il, Liu X, et al. Non-resonant metasurface for broadband elastic wave mode splitting. Applied Physics Letters, 2020, 116(17): 171903 doi: 10.1063/5.0005408

    [53]

    Huang Y, Zhang X. Pentamode metamaterials with ultra-low-frequency single-mode band gap based on constituent materials. Journal of Physics Condensed Matter, 2021, 33: 185703 doi: 10.1088/1361-648X/abeebd

    [54] 王兆宏, 李青蔚, 蔡成欣等. 可用于隔声和带隙调控的五模式超材料. 声学学报, 2017, 42(5): 610-618 (Wang Zhaohong, Li Qingwei, Cai Chengxin, et al. Pentamode metamaterials used for sound insulation and band gap controlling consisting of double-cones. Acta Acustica, 2017, 42(5): 610-618 (in Chinese)
    [55]

    Cai C, Wang Z, Chu Y, et al. The phononic band gaps of Bragg scattering and locally resonant pentamode metamaterials. Journal of Physics D: Applied Physics, 2017, 50: 415105 doi: 10.1088/1361-6463/aa83ec

    [56]

    Cai C, Han C, Wu J, et al. Tuning method of phononic band gaps of locally resonant pentamode metamaterials. Journal of Physics D: Applied Physics, 2019, 52: 045601 doi: 10.1088/1361-6463/aaebdc

    [57]

    Zhou J, Pan H, Cai C, et al. Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial. International Journal of Mechanics and Materials in Design, 2021, 17(2): 285-300 doi: 10.1007/s10999-020-09525-7

    [58]

    Zhang Q, Guo D, Hu G. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation. Advanced Functional Materials, 2021, 31(33): 2101428 doi: 10.1002/adfm.202101428

    [59] 赵伟佳, 王倚天, 朱睿等. 轻质嵌入式超结构的低频抑振研究. 中国科学: 物理学力学天文学, 2020, 50(9): 090010 (Zhao Weijia, Wang Yitian, Zhu Rui, et al. Isolating low-frequency vibration via lightweight embedded metastructures. Scientia Sinica Physica, Mechanica& Astronomica, 2020, 50(9): 090010 (in Chinese) doi: 10.1360/SSPMA-2020-0153
    [60] 吴健, 白晓春, 肖勇等. 一种多频局域共振型声子晶体板的低频带隙与减振特性. 物理学报, 2016, 65(6): 0646002 (Wu Jian, Bai Xiaochun, Xiao Yong, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate. Acta Physica Sinica, 2016, 65(6): 0646002 (in Chinese) doi: 10.7498/aps.65.064602
    [61]

    Nair S, Jokar M, Semperlotti F. Nonlocal acoustic black hole metastructures: Achieving broadband and low frequency passive vibration attenuation. Mechanical Systems and Signal Processing, 2022, 169: 108716 doi: 10.1016/j.ymssp.2021.108716

    [62]

    Lazarov BS, Jensen JS. Low-frequency band gaps in chains with attached non-linear oscillators. International Journal of Non-Linear Mechanics, 2007, 42(10): 1186-1193 doi: 10.1016/j.ijnonlinmec.2007.09.007

    [63]

    Yu D, Liu Y, Wang G, et al. Flexural vibration band gaps in Timoshenko beams with locally resonant structures. Journal of Applied Physics, 2006, 100: 124901 doi: 10.1063/1.2400803

    [64]

    Xiao Y, Wen J, Wen X. Flexural wave band gaps in locally resonant thin plates with periodically attached springmass resonators. Journal of Physics D: Applied Physics, 2012, 45: 195401 doi: 10.1088/0022-3727/45/19/195401

    [65]

    Hussein MI, Leamy MJ, Ruzzene M. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Applied Mechanics Reviews, 2014, 66(4): 040802 doi: 10.1115/1.4026911

    [66]

    Ning S, Yang F, Luo C, et al. Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation. Extreme Mechanics Letters, 2020, 35: 100623 doi: 10.1016/j.eml.2019.100623

    [67]

    Muhammad F, Ket C, Ooi L, et al. Increased power output of an electromagnetic vibration energy harvester through anti-phase resonance. Mechanical Systems and Signal Processing, 2019, 116: 129-145 doi: 10.1016/j.ymssp.2018.06.012

    [68]

    Zhang YY, Gao NS, Wu JH. New mechanism of tunable broadband in local resonance structures. Applied Acoustics, 2020, 169: 107482 doi: 10.1016/j.apacoust.2020.107482

    [69]

    Fan L, He Y, Chen X, et al. Elastic metamaterial shaft with a stack-like resonator for low-frequency vibration isolation. Journal of Physics D: Applied Physics, 2020, 53: 105101 doi: 10.1088/1361-6463/ab5d59

    [70]

    Lu K, Zhou G, Gao N, et al. Flexural vibration bandgaps of the multiple local resonance elastic metamaterial plates with irregular resonators. Applied Acoustics, 2020, 159: 107115 doi: 10.1016/j.apacoust.2019.107115

    [71] 吕锐翔, 李丽霞, 杨继博. 单边周期环形谐振径向声子晶体结构›. 振动与冲击, 2021, 40(1): 68-72 (Lü Ruixiang, Li Lixia, Yang Jibo. Radial phononic crystal structure with unilateral periodic ring resonance. Journal of Vibration and Shock, 2021, 40(1): 68-72 (in Chinese)
    [72] 刘荣强, 赵浩江, 李长洲等. 三组元栅格板的振动特性研究. 振动与冲击, 2016, 35(15): 53-57 (Liu Rongqiang, Zhao Haojiang, Li Changzhou, et al. Vibration characteristics of three-component grid plates. Journal of Vibration and Shock, 2016, 35(15): 53-57 (in Chinese)
    [73]

    Zhang H, Xiao Y, Wen J, et al. Flexural wave band gaps in metamaterial beams with membrane-type resonators: Theory and experiment. Journal of Physics D: Applied Physics, 2015, 48: 435305 doi: 10.1088/0022-3727/48/43/435305

    [74]

    Nouh M, Aldraihem O, Baz A. Metamaterial structures with periodic local resonances. Health Monitoring of Structural and Biological Systems, 2014, 9064: 90641Y doi: 10.1117/12.2046433

    [75]

    Li J, Fan X, Li F. Numerical and experimental study of a sandwich-like metamaterial plate for vibration suppression. Composite Structures, 2020, 238: 111969 doi: 10.1016/j.compstruct.2020.111969

    [76]

    Miao L, Li C, Lei L, et al. A new periodic structure composite material with quasi-phononic crystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384(25): 126594 doi: 10.1016/j.physleta.2020.126594

    [77]

    Xiao Y, Wen J. Closed-form formulas for bandgap estimation and design of metastructures undergoing longitudinal of torsional vibration. Journal of Sound and Vibration, 2017, 485: 115578 doi: 10.1016/j.jsv.2020.115578

    [78]

    Zhao L, Lu ZQ, Ding H, et al. Experimental observation of transverse and longitudinal wave propagation in a metamaterial periodically arrayed with nonlinear resonators. Mechanical Systems and Signal Processing, 2022, 170: 108836 doi: 10.1016/j.ymssp.2022.108836

    [79]

    Jiang T, He Q. Dual-directionally tunable metamaterial for low-frequency vibration isolation. Applied Physics Letters, 2017, 110: 021907 doi: 10.1063/1.4974034

    [80]

    Tian Y, Wu JH, Li H, et al. Elastic wave propagation in the elastic metamaterials containing parallel multi-resonators. Journal of Physics D: Applied Physics, 2019, 52: 395301 doi: 10.1088/1361-6463/ab2dba

    [81] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302 (Zhang Siwen, Wu Jiuhui. Low-frequency band gaps in phononic crystals with composite locally resonant structures. Acta Physica Sinica, 2013, 62(13): 134302 (in Chinese) doi: 10.7498/aps.62.134302
    [82] 张思文, 吴九汇. 基于局域共振声子晶体结构的低频振动能量回收研究. 固体力学学报, 2013, 34(4): 333-341 (Zhang Siwen, Wu Jiuhui. Energy harvesting based on locally resonant phononic crystals for low frequency vibrations. Chinese Journal of Solid Mechanics, 2013, 34(4): 333-341 (in Chinese) doi: 10.19636/j.cnki.cjsm42-1250/o3.2013.04.002
    [83]

    Bilal OR, Foehr A'e, Daraio C. Bistable metamaterial for switching and cascading elastic vibrations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4603-4606 doi: 10.1073/pnas.1618314114

    [84]

    Jin Y, Zeng S, Wen Z, et al. Deep-subwavelength lightweight metastructures for low-frequency vibration isolation. Materials and Design, 2022, 215: 110499 doi: 10.1016/j.matdes.2022.110499

    [85] 温卓群, 王鹏飞, 张雁等. 面向大尺度结构的力学超材料减振技术. 航空学报, 2018, 39: 721651 (Wen Zhuoqun, Wang Pengfei, Zhang Yan, et al. Vibration reduction technology of mechanical metamaterials presented to large scale structures. Acta Aeronautica et Astronautica Sinica, 2018, 39: 721651 (in Chinese) doi: 10.12159/j.issn.2095-6630.2019.13.0346
    [86] 卢一铭, 曹东兴, 申永军等. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究. 力学学报, 2021, 53(4): 1114-1123 (Lu Yiming, Cao Dongxing, Shen Yongjun, et al. Study on the bandgaps of defect states and application of energy harvesting of local resonant phononic crystal plate. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1114-1123 (in Chinese) doi: 10.6052/0459-1879-20-436STUDY
    [87] 温华兵, 李军, 李兵. 质量块-支架梁局域共振板结构的低频振动带隙特性研究. 江苏科技大学学报(自然科学版), 2019, 33(3): 43-48 (Wen Huabing, Li Jun, Li Bing. Low-Frequency vibration characteristics of periodic mass-beam resonantors in phononic crystal plate. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2019, 33(3): 43-48 (in Chinese)
    [88]

    Rao SS. Mechanical Vibrations. New York: Pearson Prentice Hall, 2010

    [89] 李昊, 赵发刚, 周徐斌. 基于混杂双稳定层合板的准零刚度隔振装置. 力学学报, 2019, 51(2): 354-363 (Li Hao, Zhao Fagang, Zhou Xubin. A quasi-zero stiffness vibration isolator based on hybrid bistable composite laminate. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 354-363 (in Chinese) doi: 10.2514/6.2019-1860
    [90]

    Wang K, Zhou J, Xu D. Sensitivity analysis of parametric errors on the performance of a torsion quasi-zero-stiffness vibration isolator. International Journal of Mechanical Sciences, 2017, 134: 336-346 doi: 10.1016/j.ijmecsci.2017.10.026

    [91]

    Wang K, Zhou J, Ouyang H, et al. A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy. Mechanical Systems and Signal Processing, 2021, 151: 107368 doi: 10.1016/j.ymssp.2020.107368

    [92]

    Cai C, Zhou J, Wu L, et al. Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Composite Structures, 2020, 236: 111862 doi: 10.1016/j.compstruct.2020.111862

    [93]

    Zhou J, Wang K, Xu D, et al. Multi-low-frequency flexural wave attenuation in Euler–Bernoulli beams using local resonators containing negative-stiffness mechanisms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381(37): 3141-3148 doi: 10.1016/j.physleta.2017.08.020

    [94]

    Xie B, Sheng M. Ultralow-frequency band gap in a quasi-zero-stiffness multi-resonator periodic hybrid structure. Wave Motion, 2021, 107: 102825 doi: 10.1016/j.wavemoti.2021.102825

    [95]

    Zhou J, Lingling D, Wang K, et al. A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dynamics, 2019, 96(1): 647-665 doi: 10.1007/s11071-019-04812-1

    [96]

    Wang K, Zhou J, Cai C, et al. Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Applied Mathematical Modelling, 2019, 73: 581-597 doi: 10.1016/j.apm.2019.04.033

    [97]

    He F, Shi Z, Qian D, et al. Flexural wave bandgap properties in metamaterial dual-beam structure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 429: 127950 doi: 10.1016/j.physleta.2022.127950

    [98]

    Wu Z, Liu W, Li F, et al. Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators. Mechanical Systems and Signal Processing, 2019, 134: 106357 doi: 10.1016/j.ymssp.2019.106357

    [99]

    Wang K, Zhou J, Cai C, et al. Bidirectional deep-subwavelength band gap induced by negative stiffness. Journal of Sound and Vibration, 2021, 515: 116474 doi: 10.1016/j.jsv.2021.116474

    [100]

    Wang K, Zhou J, Daolin X, et al. Tunable low-frequency torsional-wave band gaps in a meta-shaft. Journal of Physics D: Applied Physics, 2019, 52: 055104 doi: 10.1088/1361-6463/aaf039

    [101]

    Wang K, Zhou J, Wang Q, et al. Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation. Applied Physics Letters, 2019, 114(25): 251902 doi: 10.1063/1.5099425

    [102]

    Wang K, Zhou J, Xu D, et al. Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mechanical Systems and Signal Processing, 2019, 124: 664-678 doi: 10.1016/j.ymssp.2019.02.008

    [103]

    Lin Q, Zhou J, Pan H, et al. Numerical and experimental investigations on tunable low-frequency locally resonant metamaterials. Acta Mechanica Solida Sinica, 2021, 34(5): 612-623 doi: 10.1007/s10338-021-00220-4

    [104]

    Cai C, Zhou J, Wang K, et al. Flexural wave attenuation by metamaterial beam with compliant quasi-zero-stiffness resonators. Mechanical Systems and Signal Processing, 2022, 174: 109119 doi: 10.1016/j.ymssp.2022.109119

    [105]

    Lin Q, Zhou J, Wang K, et al. Low-frequency locally resonant band gap of the two-dimensional quasi-zero-stiffness metamaterials. International Journal of Mechanical Sciences, 2022, 222: 107230 doi: 10.1016/j.ijmecsci.2022.107230

    [106]

    Liu J, Guo H, Wang T. A review of acoustic metamaterials and phononic crystals. Crystals, 2020, 10(4): 305 doi: 10.3390/cryst10040305

    [107]

    Chen S, Fan Y, Fu Q, et al. A review of tunable acoustic metamaterials. Applied Sciences, 2018, 8(9): 1480 doi: 10.3390/app8091480

    [108]

    Wu L, Wang Y, Chuang K, et al. A brief review of dynamic mechanical metamaterials for mechanical energy manipulation. Materials Today, 2021, 44: 168-193 doi: 10.1016/j.mattod.2020.10.006

    [109]

    Bao H, Wu C, Wang K, et al. An enhanced dual-resonator metamaterial beam for low-frequency vibration suppression. Journal of Applied Physics, 2021, 129: 095106 doi: 10.1063/5.0040414

    [110]

    Li Y, Li H. Bandgap merging and widening of elastic metamaterial with heterogeneous resonator. Journal of Physics D: Applied Physics, 2020, 53: 475302 doi: 10.1088/1361-6463/abab2b

    [111]

    Wen S, Xiong Y, Hao S, et al. Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections. International Journal of Mechanical Sciences, 2020, 166: 105229 doi: 10.1016/j.ijmecsci.2019.105229

    [112]

    Lu K, Wu JH, Jing L, et al. The two-degree-of-freedom local resonance elastic metamaterial plate with broadband low-frequency bandgaps. Journal of Physics D: Applied Physics, 2017, 50: 095104 doi: 10.1088/1361-6463/50/9/095104

    [113]

    Wang F, Sun X, Meng H, et al. Tunable broadband low-frequency band gap of multiple-layer metastructure induced by time-delayed vibration absorbers. Nonlinear Dynamics, 2022, 107: 1903-1918 doi: 10.1007/s11071-021-07065-z

    [114]

    Fang X, Chuang KC, Jin X, et al. Band-gap properties of elastic metamaterials with inerter-based dynamic vibration absorbers. Journal of Applied Mechanics, 2018, 85(7): 071010 doi: 10.1115/1.4039898

    [115]

    Kulkarni PP, Manimala JM. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials. Journal of Applied Physics, 2016, 119: 245101 doi: 10.1063/1.4954074

    [116]

    Russillo AF, Failla G, Alotta G. Ultra-wide low-frequency band gap in locally-resonant plates with tunable inerter-based resonators. Applied Mathematical Modelling, 2022, 106: 682-695 doi: 10.1016/j.apm.2022.02.015

    [117]

    Liu Y, Yang J, Yi X, et al. Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters. Journal of Applied Physics, 2022, 131: 105103 doi: 10.1063/5.0084399

    [118]

    Zhou L, Han W, Wan S. Low frequency band gap for box girder attached IDVAs. Thin-Walled Structures, 2022, 174: 109088 doi: 10.1016/j.tws.2022.109088

    [119]

    Lin S, Zhang Y, Liang Y, et al. Bandgap characteristics and wave attenuation of metamaterials based on negative-stiffness dynamic vibration absorbers. Journal of Sound and Vibration, 2021, 502: 116088 doi: 10.1016/j.jsv.2021.116088

    [120]

    Hu G, Tang L, Xu J, et al. Metamaterial with local resonators coupled by negative stiffness springs for enhanced vibration suppression. Journal of Applied Mechanics, Transactions ASME, 2019, 86(8): 081009 doi: 10.1115/1.4043827

    [121]

    Hu G, Tang L, Das R, et al. Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Advances, 2017, 7: 025211 doi: 10.1063/1.4977559

    [122]

    Bao H, Wu C, Zheng W, et al. Vibration bandgap of a locally resonant beam considering horizontal springs. Journal of Vibration and Control, 2022, 28(3-4): 452-464 doi: 10.1177/1077546320980190

    [123]

    Zhao P, Zhang K, Zhao C, et al. Multi-resonator coupled metamaterials for broadband vibration suppression. Applied Mathematics and Mechanics (English Edition) , 2021, 42(1): 53-64 doi: 10.1007/s10483-021-2684-8

    [124]

    Hu GCM, Austin A, Sorokin V, et al. Metamaterial beam with graded local resonators for broadband vibration suppression. Mechanical Systems and Signal Processing, 2021, 146: 106982 doi: 10.1016/j.ymssp.2020.106982

    [125]

    Banerjee A, Das R, Calius EP. Frequency graded 1D metamaterials: A study on the attenuation bands. Journal of Applied Physics, 2017, 122: 075101 doi: 10.1063/1.4998446

    [126]

    Li Y, Dong X, Li H, et al. Hybrid multi-resonators elastic metamaterials for broad low-frequency bandgaps. International Journal of Mechanical Sciences, 2021, 202-203: 106501

    [127]

    Wu Q, Huang G, Liu C, et al. Low-frequency multi-mode vibration suppression of a metastructure beam with two-stage high-static-low-dynamic stiffness oscillators. Acta Mechanica, 2019, 230(12): 4341-4356 doi: 10.1007/s00707-019-02515-7

    [128]

    Al Ba'ba'a H, Nouh M, Singh T. Formation of local resonance band gaps in finite acoustic metamaterials: A closed-form transfer function model. Journal of Sound and Vibration, 2017, 410: 429-446 doi: 10.1016/j.jsv.2017.08.009

    [129] 杜春阳, 郁殿龙, 刘江伟等. X形超阻尼局域共振声子晶体梁弯曲振动带隙. 物理学报, 2017, 66(14): 140701 (Du Chunyang, Yu Dianlong, Liu Jiangwei, et al. Flexural vibration band gaps for a phononic crystal beam with X-shaped local resonance metadamping structure. Acta Physica Sinica, 2017, 66(14): 140701 (in Chinese) doi: 10.7498/aps.66.140701
    [130]

    Wang K, Zhou J, Ouyang H, et al. A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. International Journal of Mechanical Sciences, 2020, 176: 105548 doi: 10.1016/j.ijmecsci.2020.105548

    [131]

    Fang X, Wen J, Yu D, et al. Bridging-coupling band gaps in nonlinear acoustic metamaterials. Physical Review Applied, 2018, 10: 054049 doi: 10.1103/PhysRevApplied.10.054049

    [132]

    Fang X, Wen J, Yin J, et al. Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study. Physical Review E, 2016, 94(5): 052206 doi: 10.1103/PhysRevE.94.052206

    [133]

    Mi Y, Yu X. Sound transmission of acoustic metamaterial beams with periodic inertial amplification mechanisms. Journal of Sound and Vibration, 2021, 499: 116009 doi: 10.1016/j.jsv.2021.116009

    [134]

    Sheng P, Fang X, Wen J, et al. Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. Journal of Sound and Vibration, 2021, 492: 115739 doi: 10.1016/j.jsv.2020.115739

    [135]

    Fang X, Wen J, Yu D, et al. Wave propagation in a nonlinear acoustic metamaterial beam considering third harmonic generation. New Journal of Physics, 2018, 20: 123028 doi: 10.1088/1367-2630/aaf65e

    [136]

    Beli D, Ruzzene M, De Marqui C. Bridging-coupling phenomenon in linear elastic metamaterials by exploiting locally resonant metachain isomers. Physical Review Applied, 2020, 14(3): 034032 doi: 10.1103/PhysRevApplied.14.034032

    [137] 张印, 尹剑飞, 温激鸿等. 基于质量放大局域共振型声子晶体的低频减振设计. 振动与冲击, 2016, 35(17): 26-32 (Zhang Yin, Yin Jianfei, Wen Jihong, et al. Low frequency vibration reduction design for inertial local resonance phononic crystals based on inertial amplification. Journal of Vibration and Shock, 2016, 35(17): 26-32 (in Chinese)
    [138]

    Yilmaz C, Hulbert GM, Kikuchi N. Phononic band gaps induced by inertial amplification in periodic media. Physical Review B - Condensed Matter and Materials Physics, 2007, 76: 054309 doi: 10.1103/PhysRevB.76.054309

    [139]

    Wang S, Wang M, Guo Z. Adjustable low-frequency bandgap of flexural wave in an Euler-Bernoulli meta-beam with inertial amplified resonators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 417: 127671 doi: 10.1016/j.physleta.2021.127671

    [140]

    Taniker S, Yilmaz C. Generating ultra wide vibration stop bands by a novel inertial amplification mechanism topology with flexure hinges. International Journal of Solids and Structures, 2017, 106-107: 129-138

    [141]

    Frandsen NMM, Bilal OR, Jensen JS, et al. Inertial amplification of continuous structures: Large band gaps from small masses. Journal of Applied Physics, 2016, 119: 124902 doi: 10.1063/1.4944429

    [142]

    Yilmaz C, Kikuchi N. Analysis and design of passive low-pass filter-type vibration isolators considering stiffness and mass limitations. Journal of Sound and Vibration, 2006, 293(1-2): 171-195 doi: 10.1016/j.jsv.2005.09.016

    [143]

    Wang Z, Zhang Q, Zhang K, et al. Tunable digital metamaterial for broadband vibration isolation at low frequency. Advanced Materials, 2016, 28: 9857-9861 doi: 10.1002/adma.201604009

    [144]

    Wu L, Wang Y, Zhai Z, et al. Mechanical metamaterials for full-band mechanical wave shielding. Applied Materials Today, 2020, 20: 100671 doi: 10.1016/j.apmt.2020.100671

    [145]

    Yoo J, Park NC. Bandgap analysis of a tunable elastic-metamaterial-based vibration absorber with electromagnetic stiffness. Microsystem Technologies, 2020, 26(11): 3339-3348 doi: 10.1007/s00542-020-04807-8

    [146]

    Yi K, Matten G, Ouisse M, et al. Programmable metamaterials with digital synthetic impedance circuits for vibration control. Smart Materials and Structures, 2020, 29: 035005 doi: 10.1088/1361-665X/ab6693

    [147]

    Ren T, Liu C, Li F, et al. Active tunability of band gaps for a novel elastic metamaterial plate. Acta Mechanica, 2020, 231(10): 4035-4053 doi: 10.1007/s00707-020-02728-1

    [148]

    Zhou W, Muhammad, Chen W, et al. Actively controllable flexural wave band gaps in beam-type acoustic metamaterials with shunted piezoelectric patches. European Journal of Mechanics, A/Solids, 2019, 77: 103807 doi: 10.1016/j.euromechsol.2019.103807

    [149]

    Sugino C, Ruzzene M, Erturk A. Design and analysis of piezoelectric metamaterial beams with synthetic impedance shunt circuits. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2144-2155 doi: 10.1109/TMECH.2018.2863257

    [150]

    Hu G, Xu J, Tang L, et al. Tunable metamaterial beam using negative capacitor for local resonators coupling. Journal of Intelligent Material Systems and Structures, 2020, 31(3): 389-407 doi: 10.1177/1045389X19891575

    [151]

    Tan X, Chen S, Wang B, et al. Real-time tunable negative stiffness mechanical metamaterial. Extreme Mechanics Letters, 2020, 41: 100990 doi: 10.1016/j.eml.2020.100990

    [152]

    Ning S, Yan Z, Chu D, et al. Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature. Extreme Mechanics Letters, 2021, 44: 101218 doi: 10.1016/j.eml.2021.101218

    [153]

    De Sousa VC, Tan D, De Marqui C, et al. Tunable metamaterial beam with shape memory alloy resonators: Theory and experiment. Applied Physics Letters, 2018, 113: 143502 doi: 10.1063/1.5050213

    [154]

    Chuang KC, Lü XF, Wang YH. A bandgap switchable elastic metamaterial using shape memory alloys. Journal of Applied Physics, 2019, 125: 055101 doi: 10.1063/1.5065557

    [155]

    Lv XF, Xu SF, Huang ZL, et al. A shape memory alloy-based tunable phononic crystal beam attached with concentrated masses. Physics Letters, Section A:General, Atomic and Solid State Physics, 2020, 384(2): 126056 doi: 10.1016/j.physleta.2019.126056

    [156]

    Yuan Y, Li J, Bao R, et al. A double-layer metastructured beam with contact-separation switchability. Mechanics of Advanced Materials and Structures, 2022, 29(7): 1011-1019 doi: 10.1080/15376494.2020.1804017

    [157]

    Wang Y, Yang J, Chen Z, et al. Investigation of a novel MRE metamaterial sandwich beam with real-time tunable band gap characteristics. Journal of Sound and Vibration, 2022, 527: 116870 doi: 10.1016/j.jsv.2022.116870

    [158]

    Xu J, Lu H, Qin W, et al. Mechanical shunt resonators-based piezoelectric metamaterial for elastic wave attenuation. Materials, 2022, 15: 891 doi: 10.3390/ma15030891

    [159] 吴九汇, 马富银, 张思文等. 声学超材料在低频减振降噪中的应用评述. 机械工程学报, 2016, 52(13): 68-78 (Wu Jiuhui, Ma Fuyin, Zhang Siwen, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction. Journal of Vibration Engineering, 2016, 52(13): 68-78 (in Chinese) doi: 10.3901/JME.2016.13.068
    [160]

    Yu D, Wen J, Zhao H, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and Vibration, 2008, 318: 193-205 doi: 10.1016/j.jsv.2008.04.009

    [161] 刘江伟, 郁殿龙, 温激鸿等. 周期附加质量充液管路减振特性研究. 振动与冲击, 2016, 35(6): 141-145 (Liu Jiangwei, Yu Dianlong, Wen Jihong, et al. Vibration reduction of pipes conveying fluid with periodically added mass. Journal of Vibration and Shock, 2016, 35(6): 141-145 (in Chinese)
    [162] 郭旭, 崔洪宇, 洪明. 局域共振声子晶体板的减振降噪研究. 船舶力学, 2021, 25(4): 509-516 (Guo Xu, Cui Hongyu, Hong Ming. Research on vibration and noise reduction of local resonant phononic crystal plate. Journal of Ship Mechanics, 2021, 25(4): 509-516 (in Chinese) doi: 10.3969/j.issn.1007-7294.2021.04.014
    [163]

    Nanda A, Karami MA. Tunable bandgaps in a deployable metamaterial. Journal of Sound and Vibration, 2018, 424: 120-136 doi: 10.1016/j.jsv.2018.03.015

    [164] 麻乘榕, 邵晨, 万庆冕等. 用于汽车低频振动控制的局域共振声子晶体. 应用声学, 2018, 37(1): 152-158 (Ma Chengrong, Shao Chen, Wan Qingmian, et al. A locally-resonant phononic crystal for low-frequency vibration control of vehicle. Journal of Applied Acoustics, 2018, 37(1): 152-158 (in Chinese) doi: 10.11684/j.issn.1000-310X.2018.01.022
    [165] 左曙光, 谭钦文, 孙庆等. 声子晶体梁在燃料电池车副车架减振中的应用研究. 振动与冲击, 2013, 32(18): 26-30 (Zuo Shuguang, Tan Qinwen, Sun Qing, et al. Vibration reduction with phononic crystals beams for subframe of a fuel-cell car. Journal of Vibration and Shock, 2013, 32(18): 26-30 (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.18.005
    [166]

    Zhu R, Liu XN, Hu GK, et al. A chiral elastic metamaterial beam for broadband vibration suppression. Journal of Sound and Vibration, 2014, 333(10): 2759-2773 doi: 10.1016/j.jsv.2014.01.009

    [167]

    Hu G, Tang L, Liang J, et al. Acoustic-elastic metamaterials and phononic crystals for energy harvesting: A review. Smart Materials and Structures, 2021, 30: 085025 doi: 10.1088/1361-665X/ac0cbc

    [168]

    Xu X, Wu Q, Pang Y, et al. Multifunctional metamaterials for energy harvesting and vibration control. Advanced Functional Materials, 2022, 32: 2107896 doi: 10.1002/adfm.202107896

    [169] 赵龙, 陆泽琦, 丁虎等. 低频振动隔离和能量采集双功能超材料. 力学学报, 2021, 53(11): 2973-2983 (Zhao Long, Lu Zeqi, Ding Hu, et al. Low-frequency vibration isolation and energy harvesting simultaneously implemented by a metamaterial with lcoal resonance. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2973-2983 (in Chinese) doi: 10.6052/0459-1879-21-471
    [170]

    Mei T, Meng Z, Zhao K, et al. A mechanical metamaterial with reprogrammable logical functions. Nature Communications, 2021, 12: 7234 doi: 10.1038/s41467-021-27608-7

    [171]

    Raney JR, Nadkarni N, Daraio C, et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences, 2016, 113(35): 9722-9727 doi: 10.1073/pnas.1604838113

    [172]

    El Helou C, Buskohl PR, Tabor CE, et al. Digital logic gates in soft, conductive mechanical metamaterials. Nature Communications, 2021, 12: 1633 doi: 10.1038/s41467-021-21920-y

    [173]

    Fan H, Xia B, Tong L, et al. Elastic higher-order topological insulator with topologically protected corner states. Physical Review Letters, 2019, 122(20): 204301 doi: 10.1103/PhysRevLett.122.204301

    [174]

    Lyu X, Ding Q, Yang T. Merging phononic crystals and acoustic black holes. Applied Mathematics and Mechanics (English Edition) , 2020, 41(2): 279-288 doi: 10.1007/s10483-020-2568-7

    [175] 刘东彦, 李发, 张建兴等. 流体特性对周期管路弯曲振动带隙的影响. 机床与液压, 2016, 44(2): 74-77 (Liu Dongyan, Li Fa, Zhang Jianxing, et al. Effects of fluid property on flexural vibration band gap of periodic pipe. Machine Tool &Hydraulics, 2016, 44(2): 74-77 (in Chinese)
图(9)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 录用日期:  2022-05-06
  • 网络出版日期:  2022-05-07
  • 刊出日期:  2022-10-17

目录

/

返回文章
返回