A NEW METHOD FOR PREDICTING THE INTERFACIAL MECHANICAL PROPERTY IN PARTICLE-REINFORCED COMPOSITES
-
摘要: 界面在颗粒增强复合材料中起到传递载荷的关键作用, 界面性能对复合材料整体力学行为产生重要影响. 然而由于复合材料内部结构较为复杂, 颗粒与基体间的界面强度和界面断裂韧性难以确定, 尤其是法向与切向界面强度的分别预测缺乏有效方法. 本文以氧化锆颗粒增强聚二甲基硅氧烷(PDMS)复合材料为研究对象, 提出一种预测颗粒增强复合材料界面力学性能的新方法. 首先, 实验获得纯PDMS基体材料及单颗粒填充PDMS试样的单轴拉伸应力$\!-\!$应变曲线, 标定出PDMS基体材料的单轴拉伸超弹性本构关系; 其次, 建立与单颗粒填充试样一致的有限元模型, 选择特定的黏结区模型描述界面力学行为, 通过样品不同阶段拉伸力学响应的实验与数值结果对比, 分别给出颗粒与基体界面的法向强度、切向强度及界面断裂韧性; 进一步应用标定的界面力学参数, 开展不同尺寸及不同数目颗粒填充试样的实验与数值结果比较, 验证界面性能预测结果的合理性. 本文提出的界面力学性能预测方法简便、易操作、精度高, 对定量预测颗粒增强复合材料的力学性能具有一定帮助, 亦对定量预测纤维增强复合材料的界面性能具有一定参考意义.Abstract: Interfaces play a key role in the load transfer of particle reinforced composites, and the interface properties have an important impact on the overall mechanical behavior of composites. However, due to the complex internal structure of composites, it is difficult to determine the interfacial strength and fracture toughness, especially for the respective prediction of normal and tangential interfacial strength. In this paper, a new method is proposed to predict the interfacial mechanical properties of particle-reinforced composites based on zirconia particle (ZrO) reinforced polydimethylsiloxane (PDMS) composite materials. Firstly, the uniaxial tensile stress-strain curves of pure PDMS matrix material and single particle filled PDMS sample are obtained, and the uniaxial tensile constitutive relationship of the PDMS matrix material is achieved. Secondly, the finite element model (FEM) consistent with single particle filled sample is established, and a specific cohesive zone model is chosen to describe the mechanical behavior of interface. Comparison of the experimental and numerical results of tensile mechanical response of samples at different stages can yield the normal strength, tangential strength and fracture toughness of the interface, respectively. The achieved interfacial mechanical parameters are further adopted in FEM calculations of samples filled with different sizes and numbers of particles. The rationality of the proposed method of predicting interfacial properties is verified by comparing the corresponding experimental and numerical results. Such a method is simple, easy to operate and has high accuracy, which should be helpful to quantitatively predict the mechanical property of particle reinforced composites, and also has certain reference significance to quantitatively predict the interfacial properties of fiber reinforced composites.
-
-
[1] 沈观林, 胡更开. 复合材料力学. 北京: 清华大学出版社, 2006 (Shen Guanlin, Hu Genkai. Mechanics of Composites. Beijing: Tsinghua University Press, 2006 (in Chinese))
[2] 曹明月, 张启, 吴建国 等. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究. 力学学报, 2020,52(4):1095-1105 (Cao Mingyue, Zhang Qi, Wu Jianguo, et al. Study on nonlinear constitutive relationship and fracture behavior of stitched C/SiC composites. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1095-1105 (in Chinese))
[3] 白坤朝, 詹世革, 张攀峰 等. 力学十年: 现状与展望. 力学进展, 2019,49(1):201911 (Bai Kunchao, Zhan Shige, Zhang Panfeng, et al. Mechanics 2006-2015: Situation and prospect. Advances in Mechanics, 2019,49(1):201911 (in Chinese))
[4] Fu SY, Feng XQ, Lauke B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B, 2008,39:933-961 [5] Scudino S, Liu G, Prashanth KG, et al. Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Materialia, 2009,57(6):2029-2039 [6] Chen JH, Liu J, Yao Y, et al. Effect of microstructural damage on the mechanical properties of silica nanoparticle-reinforced silicone rubber composites. Engineering Fracture Mechanics, 2020,235:107195 [7] Hashin Z. Thermoelastic properties of particulate composites with imperfect interface. Journal of the Mechanics and Physics of Solids, 1990,39(6):745-762 [8] Qu S, Siegmund T, Huang Y, et al. A study of particle size effect and interface fracture in aluminum alloy composite via an extended conventional theory of mechanism-based strain gradient plasticity. Composites Science and Technology, 2005,65(7-8):1244-1253 [9] Chen JK, Wang GT, Yu ZZ, et al. Critical particle size for interfacial debonding in polymer/nanoparticle composites. Composites Science and Technology, 2010,70:861-872 [10] Toulemonde PA, Diani J, Gilormini P, et al. On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers. Mechanics of Materials, 2016,93:124-133 [11] Weng L, Fan TX, Wen M, et al. Three-dimensional multi-particle FE model and effects of interface damage, particle size and morphology on tensile behavior of particle reinforced composites. Composite Structures, 2019,209:590-605 [12] Ban HX, Yao Y, Chen SH, et al. A new constitutive model of micro-particle reinforced metal matrix composites with damage effects. International Journal of Mechanical Sciences, 2019,152:524-534 [13] Liu B, Huang WM, Huang L, et al. Size-dependent compression deformation behaviors of high particle content B4C/Al composites. Materials Science and Engineering A, 2012,534:530-535 [14] Yue YL, Zhang H, Zhang Z, et al. Tensile properties of fumed silica filled polydimethylsiloxane networks. Composites Part A, 2013,54:20-27 [15] 张立群. 橡胶纳米复合材料基础与应用. 北京: 化学工业出版社, 2018 (Zhang Liqun. Rubber Nanocomposites: Basics and Applications. Beijing: Chemical Industry Press, 2018 (in Chinese))
[16] Jong L. Improved mechanical properties of silica reinforced rubber with natural polymer. Polymer Testing, 2019,79:106009 [17] 张娟, 康国政, 饶威. 金属玻璃基复合材料的变形行为及本构关系研究综述. 力学学报, 2020,52(2):318-332 (Zhang Juan, Kang Guozheng, Rao Wei. Review on the deformation behavior and constitutive equations of metallic glass matrix composites. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):318-332 (in Chinese))
[18] 杨正茂, 刘晖, 杨俊杰. 含热冲击预损伤的陶瓷基复合材料损伤本构模型. 力学学报, 2019,51(6):1797-1809 (Yang Zhengmao, Liu Hui, Yang Junjie. Damage constitutive model for thermal shocked-ceramic matrix composite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1797-1809 (in Chinese))
[19] Ciprari D, Jacob K, Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules, 2006,39(19):6565-6573 [20] Quaresimin M, Schulte K, Zappalorto M, et al. Toughening mechanisms in polymer nanocomposites: from experiments to modelling. Composites Science and Technology, 2016,123:187-204 [21] Alimardani M, Razzaghi-Kashani M, Ghoreishy MHR. Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects. Materials & Design, 2017,115:348-354 [22] Meddeb AB, Tighe T, Ounaies Z, et al. Extreme enhancement of the nonlinear elastic response of elastomer nanoparticulate composites via interphases. Composites Part B, 2019,156:166-173 [23] Alimardani M, Razzaghi-Kashani M, Koch T. Crack growth resistance in rubber composites with controlled Interface bonding and interphase content. Journal of Polymer Research, 2019,26(47):1-9 [24] Ilseng A, Skallerud BH, Clausen AH. An experimental and numerical study on the volume change of particle-filled elastomers in various loading modes. Mechanics of Materials, 2017,54:20-27 [25] 王健. 界面改善对A1$_{2}$O $_{(3P)}$/钢基复合材料力学性能的影响. [硕士论文]. 昆明: 昆明理工大学, 2015 (Wang Jian. The effect of interface improvement on the mechanical property of A1$_{2}$O $_{(3P)}$/steel composites. [Master Thesis]. Kunming: Kunming University of Science and Technology, 2015 (in Chinese))
[26] Chen C, Xie Y, Yin S, et al. Evaluation of the interfacial bonding between particles and substrate in angular cold spray. Materials Letters, 2016,173:76-79 [27] Dariusz MJ, Chmielewski M, Wojciechowski T. The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites. Composites Part A, 2015,76:124-130 [28] Tsui CP, Tang CY, Fan JP, et al. Prediction for initiation of debonding damage and tensile stress-strain relation of glass-bead-filled modified polyphenylene oxide. International Journal of Mechanical Sciences, 2004,46(11):1659-1674 [29] Meng Q, Wang Z. Prediction of interfacial strength and failure mechanisms in particle-reinforced metal-matrix composites based on a micromechanical model. Engineering Fracture Mechanics, 2015,142:170-183 [30] 杨序纲. 复合材料界面. 北京: 化学工业出版社, 2010 (Yang Xugang. Composite Interfaces. Beijing: Chemical Industry Press, 2010 (in Chinese))
[31] Zhao YH, Weng GJ. The effect of debonding angle on the reduction of effective moduli of particle and fiber-reinforced composites. ASME Journal of Applied Mechanics, 2002,69:292-302 [32] Ban HX, Peng ZL, Fang DN, et al. A modified conventional theory of mechanism-based strain gradient plasticity considering both size and damage effects. International Journal of Solids and Structures, 2020,202:384-397 [33] Huang ZP, Wang J. Micromechanics of nanocomposites with interface energy effect//Li, SF, Gao XL ed.Handbook of Micromechanics and Nanomechanics. Singapore: Pan Stanford Publishing Pte. Ltd., 2013: 303-348 [34] Yao Y, Peng ZL, Li JJ, et al. A new theory of nanocomposites with incoherent interface effect based on interface energy density. ASME Journal of Applied Mechanics, 2020,87:021008 [35] Chen SH, Wang TC. Size effects in the particle-reinforced metal-matrix composites. Acta Mechanica, 2002,157(1):113-127 [36] Wei YG. Particulate size effect in the particle reinforced metal matrix composites. Acta Mechanica Sinica, 2001,17(1):45-58 [37] Yin HB, et al. Quantitative prediction of the whole peeling process of an elastic film on a rigid substrate. ASME Journal of Applied Mechanics, 2018,85:091004 [38] Williams JG, Hadavinia H. Analytical solutions for cohesive zone models. Journal of the Mechanics and Physics of Solid, 2002,50(4):809-825 -
期刊类型引用(3)
1. 田文龙,齐乐华,晁许江. 基于有限元压缩方法的复合材料RVE创建. 力学学报. 2023(07): 1537-1547 . 本站查看
2. 刘聪超,徐新虎,李淳孝,祝志远. 基于ABAQUS对EPDM/PP TPV界面屈服强度的预测. 农业装备与车辆工程. 2023(09): 121-124 . 百度学术
3. 朱秀芳,卢国兴,马书香,周宏元,张宏. CNT对树脂基和金属基材料的力学增强性能对比. 北京理工大学学报. 2023(11): 1187-1196 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1016
- HTML全文浏览量: 169
- PDF下载量: 468
- 被引次数: 7