NUMERICAL STUDY ON THE EVOLUTION OF THREE-DIMENSIONAL CONCAVE CYLINDRICAL INTERFACE ACCELERATED BY REFLECTED SHOCK
-
摘要: 激波与气柱相互作用是Richtmyer-Meshkov不稳定性研究的经典案例. 单次激波与二维气柱相互作用已得到广泛关注, 但是反射激波再次冲击气柱 (尤其是三维气柱) 的研究较少, 相关演化规律和机理尚不清楚. 反射激波再次冲击演化中的气柱界面会产生新的斜压涡量, 影响涡量的输运和分布, 从而影响界面的演化. 本文采用自主开发的HOWD (high-order WENO and double-flux methods) 程序, 研究了马赫数为1.29的平面激波冲击N$_{2}$气柱(气柱外为SF$_{6})$的演化过程, 并考察了反射激波对二维和三维凹气柱界面演化的影响规律. 在数值模拟中, 选取了不同的反射距离 (定义为气柱和反射边界的距离), 得到了二维和三维凹气柱在反射激波冲击前后的完整演化图像, 提取了气柱上特征点位置随时间变化的定量数据, 重点分析了不同演化阶段气柱几何特征及斜压涡量分布的变化趋势. 研究表明, 反射距离决定着反射激波作用气柱时的激波形状和气柱形态, 从而影响斜压涡量的生成和分布, 进而改变气柱的不稳定性演化过程. 对于三维气柱, 不同高度截面上的斜压涡量分布不同, 从而诱导出复杂的三维演化结构.
-
关键词:
- Richtmyer-Meshkov不稳定性 /
- 反射激波 /
- 气柱 /
- 数值计算
Abstract: The interaction of shock wave with cylindrical interface is fundamental in study of the Richtmyer-Meshkov (RM) instability. Although the RM instability of two-dimensional (2D) cylindrical interfaces under a single shock wave has been extensively studied previously, the interaction of reflected shock (short for reshock) with cylindrical interfaces, especially three-dimensional (3D) cylindrical interfaces has not been investigated thoroughly, with relevant development rules and underlying mechanisms unclear. When the shock wave interacts with the evolving interface after reshock, new baroclinic vorticity appears on the interface and this will have a major influence on the evolution of the interface. In this work, the HOWD (high order WENO and double-flux) solver developed in our group is used to numerically study the reshock effect on the evolution of 2D and 3D concave cylindrical N$_{2}$/SF$_{6}$ (inner/outer phases) interfaces with incident planar shock strength of $Ma=1.29$. This work will focus on the evolution of 2D and 3D concave cylindrical interfaces after the reshock under different reflected distances, which is defined as the distance between the end wall and the center of the gas cylinder. Series of data have been extracted both before and after the reshock, including the schlieren and vorticity images of the evolving gas cylinder and the quantitative data of the geometric position of the feature points on the gas cylinder. The geometrical characteristics of the distorted interface and the generation and distribution of baroclinic vorticity in different stages are analyzed. The results indicate that for different reflected distances, the shapes of the evolving interface and the reshock at the interaction instance affect the generation and distribution of the baroclinic vorticity, resulting in distinct evolution characteristics of the RM instability. For the 3D concave cylindrical interface, the baroclinic vorticity distributed in 3D space at different heights can induce complicated 3D structures of the evolving interface.-
Keywords:
- Richtmyer-Meshkov instability /
- reflected shock /
- gas cylinder /
- numerical simulation
-
-
[1] Richtmyer RD. Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math, 1960,13(2):297-319 [2] Meshkov EE. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn, 1969,4(5):101-104 [3] Lindl JD, McCrory RL, Campbell EM. Progress toward ignition and burn propagation in inertial confinement fusion. Phys Today, 1992,45(9):32-40 [4] Lindl JD, Amendt P, Berger RL, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys Plasmas, 2004,11:339-491 [5] 徐建于, 黄生洪. 圆柱形汇聚激波诱导Richtmyer-Meshkov不稳定的SPH模拟. 力学学报, 2019,51(4):998-1011 (Xu Jianyu, Huang Shenghong. Numerical simulation of cylindrical converging shock induced Richtmyer-Meshkov instability with SPH. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):998-1011 (in Chinese))
[6] Robey HF, MacGowan BJ, Landen OL, et al. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions. Phys Plasmas, 2013,20:052707 [7] Yang J, Kubota T, Zukoski EE. Application of shock-induced mixing to supersonic combustion. AIAA J, 1993,31(5):854-862 [8] 汪洋, 董刚. RM 不稳定过程中预混火焰界面演化及混合区增长预测. 力学学报, 2020,52(6):1655-1665 (Wang Yang, Dong Gang. Interface evolutions and growth predictions of mixing zone on premixed flame interface during RM instability. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1655-1665 (in Chinese))
[9] Arnett WD, Bahcall JN, Kirshner RP, et al. Supernova 1987A. Annu Rev Astron Astrophys, 2003,27(1):629-700 [10] Luo XS, Liang Y, Si T, et al. Effects of non-periodic portions of interface on Richtmyer-Meshkov instability. Journal of Fluid Mechanics, 2019,861:309-327 [11] Guo X, Zhai ZG, Si T, et al. Bubble merger in initial Richtmyer-Meshkov instability on inverse-chevron interface. Physical Review Fluids, 2019,4(9):092001 [12] 刘金宏, 邹立勇, 曹仁义 等. 绕射激波和反射激波作用下N$_{2}$/SF$_{6}$界面R-M不稳定性实验研究. 力学学报, 2014,46(3):475-479 (Liu Jinhong, Zou Liyong, Cao Renyi, et al. Experimentally study of the Richtmyer-Meshkov instability at N$_{2}$/SF$_{6}$ flat interface by diffracted incident shock waves and reshock. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(3):475-479 (in Chinese))
[13] Ding JC, Liang Y, Chen MJ, et al. Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Physics of Fluids, 2018,30(10):106109 [14] Ding JC, Si T, Chen MJ, et al. On the interaction of planar shock with three-dimensional light gas cylinder. Journal of Fluid Mechanics, 2017,828:289-317 [15] Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 1987,181:41-76 [16] Ou JF, Ding JC, Luo XS, et al. Effects of Atwood number on shock focusing in shock-cylinder interaction. Experiments in Fluids, 2018,59(2):29-39 [17] Ou JF, Zhai ZG. Effects of aspect ratio on shock-cylinder interaction. Acta Mechanica Sinica, 2019,35(1):61-69 [18] Zou LY, Liao SF, Liu CL, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders. Physics of Fluids, 2016,28(3):036101 [19] 丛洲洋, 郭旭, 司廷. 反射激波诱导界面不稳定性研究进展. 中国科学: 物理学力学天文学, 2020,50:104703 (Cong Zhouyang, Guo Xu, Si Ting. Advances in interfacial instability induced by reshock. Sci Sin-Phys Mech Astron, 2020,50:104703 (in Chinese))
[20] Hill DJ, Pantano C, Pullin DI. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock. Journal of Fluid Mechanics, 2006,557:29-61 [21] Latini M, Schilling O, Don WS. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability. Journal of Computational Physics, 2007,221(2):805-836 [22] Schilling O, Latini M. High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data. Acta Math Sci, 2010,30(2):595-620 [23] Haehn N, Weber C, Oakley J, et al. Experimental investigation of a twice-shocked spherical gas inhomogeneity with particle image velocimetry. Shock Waves, 2011,21(3):225-231 [24] Jacobs JW, Krivets VV, Tsiklashvili V, et al. Experiments on the Richtmyer-Meshkov instability with an imposed, random initial perturbation. Shock Waves, 2013,23(4):407-413 [25] Si T, Zhai ZG, Yang JM, et al. Experimental studies of reshocked spherical gas interfaces. Physics of Fluids, 2012,24(5):054101 [26] Mohaghar M, Carter J, Musci B, et al. Evaluation of turbulent mixing transition in a shock-driven variable-density flow. Journal of Fluid Mechanics, 2017,831:779-825 [27] Brouillette M, Sturtevant B. Growth induced by multiple shock waves normally incident on plane gaseous interfaces. Physica D, 1989,37(1-3):248-263 [28] Shankar SK, Kawai S, Lele SK. Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Physics of Fluids, 2011,23(2):024102 [29] Quirk JJ, Karni S. On the dynamics of a shock-bubble interaction. Journal of Fluid Mechanics, 1996,318:129-163 [30] Niederhaus JHJ, Greenough JA, Oakley JG, et al. A computational parameter study for the three-dimensional shock-bubble interaction. Journal of Fluid Mechanics, 2008,594:85-124 [31] Shankar SK, Lele SK. Numerical investigation of turbulence in reshocked Richtmyer-Meshkov unstable curtain of dense gas. Shock Waves, 2014, 24(1): 79-95 [32] 张赋, 翟志刚, 司廷 等. 反射激波作用下重气柱界面演化的PIV 研究. 实验流体力学, 2014,28(5):13-17 (Zhang Bin, Zhai Zhigang, Si Ting, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method. Journal of Experiments in Fluid Mechanics, 2014,28(5):13-17 (in Chinese))
[33] 何惠琴, 翟志刚, 司廷 等. 反射激波作用下两种重气柱界面不稳定性实验研究. 实验流体力学, 2014,28(6):56-60 (He Huiqin, Zhai Zhigang, Si Ting, et al. Experimental study on the reshocked RM instability of two kinds of heavy gas cylinder. Journal of Experiments in Fluid Mechanics, 2014,28(6):56-60 (in Chinese))
[34] 王显圣, 司廷, 罗喜胜 等. 反射激波冲击重气柱的RM不稳定性数值研究. 力学学报, 2012,44(4):664-672 (Wang Xiansheng, Si Ting, Luo Xisheng, et al. Numerical study on the RM instability of a heavy-gas cylinder interacted with reshock. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(4):664-672 (in Chinese))
[35] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究. 物理学报, 2013,62(14):144701 (Sha Sha, Chen Zhihua, Xue Dawen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder. Acta Phys Sin, 2013,62(14):144701 (in Chinese))
[36] 丁举春. 汇聚Richtmyer-Meshkov不稳定性的实验与数值研究. [博士论文]. 合肥: 中国科学技术大学, 2016 (Ding Juchun. Experimental and numerical study on converging Richtmyer-Meshkov instability. [PhD Thesis]. Hefei: University of Science and Technology of China, 2016 (in Chinese))
[37] Liu XD, Osher S, Chan T. Weighted Essentially Non-oscillatory schemes. Journal of Computational Physics, 1994,115(1):200-212 [38] Schilling O, Latini M, Don WS. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Phys Rev E, 2007,76(2):026319 [39] Wang XS, Yang DG, Wu JQ, et al. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Physics of Fluids, 27(6): 064104, 2015 [40] 王显圣. 极小曲面特征界面的Richtmyer-Meshkov不稳定性研究. [博士论文]. 合肥: 中国科学技术大学, 2013 (Wang Xiansheng. The Richtmyer-Meshkov instability on minimum-surface featured interface. [PhD Thesis]. Hefei: University of Science and Technology of China, 2013 (in Chinese))
[41] Isenberg C. The Science of Soap Films and Soap Bubbles. New York: Dover Publications INC, 1992 -
期刊类型引用(7)
1. 韩崇巍,金迪,杨居翰,赵啟伟,张旸,李文君,杜卓林. 航天器用界面导热填料应用状态接触传热系数分析. 航天器工程. 2024(01): 92-98 . 百度学术
2. 夏吝时,杨海龙,那伟,杨凯威,孙波,石宝丽. 飞行器隔热瓦1200℃性能测试中接触热阻影响仿真与验证. 装备环境工程. 2023(02): 42-49 . 百度学术
3. 杨龙,王婉人,任召. 导热垫在机载电子设备中的选择与应用. 机械工程师. 2023(10): 68-70+74 . 百度学术
4. 翟恒东,李利民,杨骏,霍玉峰,邓思洪,蒋麒麟. 基于共轭梯度法辨识钢渣温度分布. 冶金设备. 2022(02): 1-8 . 百度学术
5. 郭树起. 应用边界积分法求圆形夹杂问题的解析解. 力学学报. 2020(01): 73-81 . 本站查看
6. 石宏岩,鲍德玉,赵胜男,陈东岩. 基于数值模拟对不同材料接触热阻的研究. 赤峰学院学报(自然科学版). 2020(11): 19-22 . 百度学术
7. 汪献伟,王兆亮,何庆,李秀莲. 宏观接触热阻研究综述. 工程科学学报. 2019(10): 1240-1248 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 1353
- HTML全文浏览量: 309
- PDF下载量: 175
- 被引次数: 15